Problem:
If Tnβ=1+2+3+β―+n and
Pnβ=T2ββ1T2βββ
T3ββ1T3βββ
T4ββ1T4βββ
β―β
Tnββ1Tnββ for n=2,3,4,β¦,
then P1991β is closest to which of the following numbers?
Answer Choices:
A. 2
B. 2.3
C. 2.6
D. 2.9
E. 3.2
Solution:
Since Tnβ=2(n+1)nβ,Pnβ=2n(n+1)β2β2n(n+1)ββPnβ1β=(n+2)(nβ1)(n+1)nβPnβ1β.
Therefore
P1991ββ=1993β
19901992β
1991ββ
(1992β
19891991β
1990βP1989β)=19931991ββ
19891991βP1989β=19931991ββ
19891991ββ
(1991β
19881990β
1989βP1988β)=19931991ββ
19881990βP1988β=β―=19931991ββ
kk+2βPkβ=β―=19931991ββ
24βP2β=19931991ββ
3β
so 2.9 is closest to P1991β.
OR
Note that
Pnβ=k=2βnβ(k+2)(kβ1)k(k+1)ββ=(βk=2nβ(k+2))(βk=2nβ(kβ1))(βk=2nβk)(βk=2nβ(k+1))β=(2β
3(n+2)!β)(nβ1)!n!(2(n+1)!β)β=n+23nββ
so P1991β=19933β
1991β which is closest to 2.9.