Problem:
If x+x2β1β+xβx2β1β1β=20 then x2+x4β1β+x2+x4β1β1β=
Answer Choices:
A. 5.05
B. 20
C. 51.005
D. 61.25
E. 400
Solution:
Clear the denominator in the first equation to obtain
(x2β(x2β1))+1=20(xβx2β1β) or xβx2β1β=101β.
Thus xβx2β1β1β=x+x2β1β=10, so that 2x=101β+10=10.1. Rationalize the denominator in the problem's second expression to obtain
x2+x4β1β+x2+x4β1β1ββ=x2+x4β1β+(x2βx4β1β)=2x2=21ββ
(10.1)2=51.005.β