Problem: If xβ₯0x \geq 0xβ₯0, then xxx=\sqrt{x \sqrt{x \sqrt{x}}}=xxxβββ=
Answer Choices:
A. xxx \sqrt{x}xxβ
B. xx4x \sqrt[4]{x}x4xβ
C. x8\sqrt[8]{x}8xβ
D. x38\sqrt[8]{x^{3}}8x3β
E. x78\sqrt[8]{x^{7}}8x7β
Solution:
xxx=(x(xβ x1/2)1/2)1/2=(x(x3/2)1/2)1/2=(xβ x3/4)1/2=(x7/4)1/2=x7/8=x78.\begin{aligned} \sqrt{x \sqrt{x \sqrt{x}}} &= \left(x\left(x \cdot x^{1 / 2}\right)^{1 / 2}\right)^{1 / 2} = \left(x\left(x^{3 / 2}\right)^{1 / 2}\right)^{1 / 2} = \left(x \cdot x^{3 / 4}\right)^{1 / 2} \\ &= \left(x^{7 / 4}\right)^{1 / 2} = x^{7 / 8} = \sqrt[8]{x^{7}}. \end{aligned} xxxββββ=(x(xβ x1/2)1/2)1/2=(x(x3/2)1/2)1/2=(xβ x3/4)1/2=(x7/4)1/2=x7/8=8x7β.β