Problem: If 3(4x+5Ο)=P3(4 x+5 \pi)=P3(4x+5Ο)=P, then 6(8x+10Ο)=6(8 x+10 \pi)=6(8x+10Ο)=
Answer Choices:
A. 2P2 P2P
B. 4P4 P4P
C. 6P6 P6P
D. 8P8 P8P
E. 18P18 P18P
Solution:
6(8x+10Ο)=[2β 3][2(4x+5Ο)]=2β 2[3(4x+5Ο)]=4P6(8 x+10 \pi)=[2 \cdot 3][2(4 x+5 \pi)]=2 \cdot 2[3(4 x+5 \pi)]=4 P6(8x+10Ο)=[2β 3][2(4x+5Ο)]=2β 2[3(4x+5Ο)]=4P.
OR\textbf{OR} OR
Since P=12x+15ΟP=12 x+15 \piP=12x+15Ο, we have 6(8x+10Ο)=48x+60Ο=4(12x+15Ο)=4P6(8 x+10 \pi)=48 x+60 \pi=4(12 x+15 \pi)=4 P6(8x+10Ο)=48x+60Ο=4(12x+15Ο)=4P.