Problem:
In β³ABC,β A=55β,β C=75β,D is on side AB and E is on side BC. If DB=BE, then β BED=
Answer Choices:
A. 50β
B. 55β
C. 60β
D. 65β
E. 70β
Solution:
We have β B=180ββ(55β+75β)=50β. Since β³BDE is isosceles, β BED=2180βββ Bβ=2180ββ50ββ=65β.