Problem:
If f(x)=ax4βbx2+x+5 and f(β3)=2, then f(3)=
Answer Choices:
A. β5
B. β2
C. 1
D. 3
E. 8
Solution:
Since
f(3)f(β3)f(3)βf(β3)β=aβ
(3)4=aβ
(β3)4=ββbβ
(3)2βbβ
(β3)2β+3β36β+5+5β
Thus, f(3)=f(β3)+6=2+6=8.
Note. For any x,f(x)βf(βx)=2x, so f(x)=f(βx)+2x.
OR
Since
2=f(β3)=81aβ9bβ3+5
we have
b=9a
Thus
f(3)=81aβ9b+3+5=81aβ9(9a)+8=8.