Problem:
If f(x)=x(x+1)(x+2)(x+3) then f(0)+f(β1)+f(β2)+f(β3)=
Answer Choices:
A. β8/9
B. 0
C. 8/9
D. 1
E. 10/9
Solution:
Since 0z=0 for any z>0,f(0)=f(β2)=0. Since (β1)0=1, f(0)+f(β1)+f(β2)+f(β3)=(β1)0(1)2+(β3)β2(β1)0=1+(β3)21β=910β.