Problem: If 3=kβ 2r3=k \cdot 2^{r}3=kβ 2r and 15=kβ 4r15=k \cdot 4^{r}15=kβ 4r, then r=r=r=
Answer Choices:
A. β25-\log _{2} 5βlog2β5
B. 52\log _{5} 2log5β2
C. 105\log _{10} 5log10β5
D. 25\log _{2} 5log2β5
E. 52\dfrac{5}{2}25β
Solution:
Since 3=kβ 2r3=k \cdot 2^{r}3=kβ 2r and 15=kβ 4r15=k \cdot 4^{r}15=kβ 4r, we have
5=153=kβ 4rkβ 2r=22r2r=2r5=\dfrac{15}{3}=\dfrac{k \cdot 4^{r}}{k \cdot 2^{r}}=\dfrac{2^{2 r}}{2^{r}}=2^{r} 5=315β=kβ 2rkβ 4rβ=2r22rβ=2r
Thus, by definition, r=25r=\log _{2} 5r=log2β5.