Problem:
What is the value of the expression
log2β100!1β+log3β100!1β+log4β100!1β+β―+log100β100!1β?
Answer Choices:
A. 0.01
B. 0.1
C. 1
D. 2
E. 10
Solution:
Express each term using a base-10 logarithm, and note that the sum equals log2/log100!+log3/log100!+β―+log100/log100!=log100!/log100!=1.
OR
Since 1/logkβ100! equals log100!βk for all positive integers k, the expression equals log100!β(2β
3β
β―β
100)=log100!β100!=1.