Problem:
1β2+3β4+β―β98+99=
Answer Choices:
A. β50
B. β49
C. 0
D. 49
E. 50
Solution:
Pairing the first two terms, the next two terms, etc. yields
β1β2+3β4+β―β98+99=(1β2)+(3β4)+β―+(97β98)+99=β1β1β1ββ―β1+99=50β
since there are 49 of the β1's
OR
β1β2+3β4+β―β98+99=1+[(β2+3)+(β4+5)+β―+(β98+99)]=1+[1+1+β―+1]=1+49=50.β