Problem:
Let x be a real number such that secxβtanx=2. Then secx+tanx=
Answer Choices:
A. 0.1
B. 0.2
C. 0.3
D. 0.4
E. 0.5
Solution:
From the identity 1+tan2x=sec2x it follows that 1=sec2xβtan2x= (secxβtanx)(secx+tanx)=2(secx+tanx), so secx+tanx=0.5.
OR
The given relation can be written as cosx1βsinxβ=2. Squaring both sides yields 1βsin2x(1βsinx)2β=4, hence 1+sinx1βsinxβ=4. It follows that sinx=β53β and that
cosx=21βsinxβ=21β(β3/5)β=54β.
Thus secx+tanx=45ββ43β=0.5.