Problem:
Find a aa if a aa and b bb are integers such that x 2 β x β 1 x^{2}-x-1x 2 β x β 1 is a factor of a x 17 + b x 16 + 1 a x^{17}+b x^{16}+1a x 1 7 + b x 1 6 + 1 .
Solution:
Since the roots of x 2 β x β 1 = 0 x^{2}-x-1=0x 2 β x β 1 = 0 are p = 1 2 ( 1 + 5 ) p=\frac{1}{2}(1+\sqrt{5})p = 2 1 β ( 1 + 5 β ) and q = 1 2 ( 1 β 5 ) q=\frac{1}{2}(1-\sqrt{5})q = 2 1 β ( 1 β 5 β ) , these must also be roots of a x 17 + b x 16 + 1 = 0 a x^{17}+b x^{16}+1=0a x 1 7 + b x 1 6 + 1 = 0 . Thus
a p 17 + b p 16 = β 1 and a q 17 + b q 16 = β 1 a p^{17}+b p^{16}=-1 \quad \text { and } \quad a q^{17}+b q^{16}=-1
a p 1 7 + b p 1 6 = β 1 and a q 1 7 + b q 1 6 = β 1
Multiplying the first of these equations by q 16 q^{16}q 1 6 , the second one by p 16 p^{16}p 1 6 , and using the fact that p q = β 1 \mathrm{pq}=-1p q = β 1 , we find that
a p + b = β q 16 and a q + b = β p 16 a p+b=-q^{16} \quad \text { and } \quad a q+b=-p^{16}
a p + b = β q 1 6 and a q + b = β p 1 6
Thus
a = p 16 β q 16 p β q = ( p 8 + q 8 ) ( p 4 + q 4 ) ( p 2 + q 2 ) ( p + q ) (1) a=\frac{p^{16}-q^{16}}{p-q}=\left(p^{8}+q^{8}\right)\left(p^{4}+q^{4}\right)\left(p^{2}+q^{2}\right)(p+q) \tag{1}
a = p β q p 1 6 β q 1 6 β = ( p 8 + q 8 ) ( p 4 + q 4 ) ( p 2 + q 2 ) ( p + q ) ( 1 )
Since
p + q = 1 p 2 + q 2 = ( p + q ) 2 β 2 p q = 1 + 2 = 3 , p 4 + q 4 = ( p 2 + q 2 ) 2 β 2 ( p q ) 2 = 9 β 2 = 7 , p 8 + q 8 = ( p 4 + q 4 ) 2 β 2 ( p q ) 4 = 49 β 2 = 47 , \begin{aligned}
p+q &=1 \\
p^{2}+q^{2} &=(p+q)^{2}-2 p q=1+2=3, \\
p^{4}+q^{4} &=\left(p^{2}+q^{2}\right)^{2}-2(p q)^{2}=9-2=7, \\
p^{8}+q^{8} &=\left(p^{4}+q^{4}\right)^{2}-2(p q)^{4}=49-2=47,
\end{aligned}
p + q p 2 + q 2 p 4 + q 4 p 8 + q 8 β = 1 = ( p + q ) 2 β 2 p q = 1 + 2 = 3 , = ( p 2 + q 2 ) 2 β 2 ( p q ) 2 = 9 β 2 = 7 , = ( p 4 + q 4 ) 2 β 2 ( p q ) 4 = 4 9 β 2 = 4 7 , β
substitution into ( 1 ) (1)( 1 ) yields
a = ( 47 ) ( 7 ) ( 3 ) ( 1 ) = 987 . a=(47)(7)(3)(1)=\boxed{987}.
a = ( 4 7 ) ( 7 ) ( 3 ) ( 1 ) = 9 8 7 β .
Note. Substituting for p pp and q qq into ( 1 ) (1)( 1 ) gives
a = 1 5 [ ( 1 + 5 2 ) 16 β ( 1 β 5 2 ) 16 ] a=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{16}-\left(\frac{1-\sqrt{5}}{2}\right)^{16}\right]
a = 5 β 1 β β£ β’ β‘ β ( 2 1 + 5 β β ) 1 6 β ( 2 1 β 5 β β ) 1 6 β¦ β₯ β€ β
whose right side may be recognized as (the Binet form of) the 16 161 6 -th
Fibonacci number F 16 F_{16}F 1 6 β . It is easiest to compute F 16 F_{16}F 1 6 β by iteration, using the recursive definition: F 1 = F 2 = 1 , F n = F n β 1 + F n β 2 F_{1}=F_{2}=1, F_{n}=F_{n-1}+F_{n-2}F 1 β = F 2 β = 1 , F n β = F n β 1 β + F n β 2 β for n > 2 n>2n > 2 .
OR \textbf{OR}
OR
The other factor is of degree 15 151 5 and we write (with slight malice aforethought)
( β 1 β x + x 2 ) ( β c 0 + c 1 x β β¦ + c 15 x 15 ) = 1 + b x 16 + a x 17 \left(-1-x+x^{2}\right)\left(-c_{0}+c_{1} x-\ldots+c_{15} x^{15}\right)=1+b x^{16}+a x^{17}
( β 1 β x + x 2 ) ( β c 0 β + c 1 β x β β¦ + c 1 5 β x 1 5 ) = 1 + b x 1 6 + a x 1 7
Comparing coefficients:
x 0 : c 0 = 1 , x 1 : c 0 β c 1 = 0 β c 1 = 1 x 2 : β c 0 β c 1 + c 2 = 0 β c 2 = 2 \begin{aligned}
&x^{0}: c_{0}=1, \\
&x^{1}: c_{0}-c_{1}=0 \Rightarrow c_{1}=1 \\
&x^{2}: -c_{0}-c_{1}+c_{2}=0 \Rightarrow c_{2}=2
\end{aligned}
β x 0 : c 0 β = 1 , x 1 : c 0 β β c 1 β = 0 β c 1 β = 1 x 2 : β c 0 β β c 1 β + c 2 β = 0 β c 2 β = 2 β
and for 3 β€ k β€ 15 3 \leq k \leq 153 β€ k β€ 1 5 ,
x k : β c k β 2 β c k β 1 + c k = 0 x^{k}:-c_{k-2}-c_{k-1}+c_{k}=0
x k : β c k β 2 β β c k β 1 β + c k β = 0
It follows that for k β€ 15 , c k = F k + 1 k \leq 15, c_{k}=F_{k+1}k β€ 1 5 , c k β = F k + 1 β , the ( k + 1 ) (k+1)( k + 1 ) -st Fibonacci number.
Thus a = c 15 = F 16 = 987 a=c_{15}=F_{16}=\boxed{987}a = c 1 5 β = F 1 6 β = 9 8 7 β .
The problems on this page are the property of the MAA's American Mathematics Competitions