Problem:
Compute (31)(30)(29)(28)+1β.
Solution:
The data
4β
3β
2β
1+15β
4β
3β
2+16β
5β
4β
3+1β=52=(3β
2β1)2=112=(4β
3β1)2=192=(5β
4β1)2β
suggest that (k+1)(k)(kβ1)(kβ2)+1=[k(kβ1)β1]2=[(k2βk)β1]2. The calculations
(k+1)(k)(kβ1)(kβ2)+1β=[(k+1)(kβ2)][k(kβ1)]+1=(k2βkβ2)(k2βk)+1=(k2βk)2β2(k2βk)+1=[(k2βk)β1]2β
show that this is true. Thus (31)(30)(29)(28)+1β=302β30β1=869β.
The problems on this page are the property of the MAA's American Mathematics Competitions