Problem:  
Find a x 5 + b y 5  a x^{5}+b y^{5}a x 5 + b y 5   if the real numbers a , b , x  a, b, xa , b , x   and y  yy   satisfy the equations
a x + b y = 3 , a x 2 + b y 2 = 7 , a x 3 + b y 3 = 16 , a x 4 + b y 4 = 42  a x+b y=3, \quad a x^{2}+b y^{2}=7, \quad a x^{3}+b y^{3}=16, \quad a x^{4}+b y^{4}=42
a x + b y = 3 , a x 2 + b y 2 = 7 , a x 3 + b y 3 = 1 6 , a x 4 + b y 4 = 4 2 
Solution: 
For n = 1  n=1n = 1   and n = 2  n=2n = 2  , the identity
( a x n + 1 + b y n + 1 ) ( x + y ) β ( a x n + b y n ) x y = a x n + 2 + b y n + 2 (1)  \left(a x^{n+1}+b y^{n+1}\right)(x+y)-\left(a x^{n}+b y^{n}\right) x y=a x^{n+2}+b y^{n+2} \tag{1}
( a x n + 1 + b y n + 1 ) ( x + y ) β ( a x n + b y n ) x y = a x n + 2 + b y n + 2 ( 1 ) 
yields the equations
7 ( x + y ) β 3 x y = 16  and  16 ( x + y ) β 7 x y = 42  7(x+y)-3 x y=16 \quad \text { and } \quad 16(x+y)-7 x y=42
7 ( x + y ) β 3 x y = 1 6  and  1 6 ( x + y ) β 7 x y = 4 2 
Solving these last two equations simultaneously, one finds that
x + y = β 14  and  x y = β 38 (2)  x+y=-14 \quad \text { and } \quad x y=-38 \tag{2}
x + y = β 1 4  and  x y = β 3 8 ( 2 ) 
Applying ( 1 )  (1)( 1 )   with n = 3  n=3n = 3   then gives
a x 5 + b y 5 = ( 42 ) ( β 14 ) β ( 16 ) ( β 38 ) = β 588 + 608 = 20  a x^{5}+b y^{5}=(42)(-14)-(16)(-38)=-588+608=\boxed{20}
a x 5 + b y 5 = ( 4 2 ) ( β 1 4 ) β ( 1 6 ) ( β 3 8 ) = β 5 8 8 + 6 0 8 = 2 0 β 
Note: From ( 2 )  (2)( 2 )   we can solve for x  xx   and y  yy  . We obtain x = β 7 Β± 87  x=-7 \pm \sqrt{87}x = β 7 Β± 8 7 β   and y = β 7 β 87  y=-7 \mp \sqrt{87}y = β 7 β 8 7 β  , from which a = 49 76 Β± 457 6612 87  a=\frac{49}{76} \pm \frac{457}{6612} \sqrt{87}a = 7 6 4 9 β Β± 6 6 1 2 4 5 7 β 8 7 β   and b = 49 76 β 457 6612 87  b=\frac{49}{76} \mp \frac{457}{6612} \sqrt{87}b = 7 6 4 9 β β 6 6 1 2 4 5 7 β 8 7 β  .
 
The problems on this page are the property of the MAA's American Mathematics Competitions