Problem:
In triangle ABC,Aβ²,Bβ², and Cβ² are on sides BC,AC, and AB, respectively. Given that AAβ²,BBβ², and CCβ² are concurrent at the point O, and that
OAβ²AOβ+OBβ²BOβ+OCβ²COβ=92
find the value of
OAβ²AOββ
OBβ²BOββ
OCβ²COβ
Solution:
Since β³AOB and β³Aβ²OB share an altitude, as do β³AOC and β³Aβ²OC, we have
OAβ²AOβ=[Aβ²OB][AOB]ββ=[COAβ²][COA]β=[Aβ²OB]+[COAβ²][AOB]+[COA]β=[BOC][AOB]+[COA]β=xz+yββ
where x=[BOC],y=[COA], and z=[AOB]. Similarly,
OBβ²BOβ=yx+zβ and OCβ²COβ=zy+xβ
We then have
OAβ²AOβOBβ²BOβOCβ²COββ=xyz(z+y)(x+z)(y+x)β=xyzyz2+y2z+x2z+xz2+xy2+x2y+2xyzβ=xyzyz(z+y)+xz(x+z)+xy(y+x)β+2=xz+yβ+yx+zβ+zy+xβ+2β
Hence,
OAβ²AOβOBβ²BOβOCβ²COβ=(OAβ²AOβ+OBβ²BOβ+OCβ²COβ)+2=92+2=94β
The problems on this page are the property of the MAA's American Mathematics Competitions