Problem:  
Find the positive integer n  nn   for which
⌊ 2 1 ⌋ + ⌊ 2 2 ⌋ + ⌊ 2 3 ⌋ + ⋯ + ⌊ 2 n ⌋ = 1994  \left\lfloor\log _{2} 1\right\rfloor+\left\lfloor\log _{2} 2\right\rfloor+\left\lfloor\log _{2} 3\right\rfloor+\cdots+\left\lfloor\log _{2} n\right\rfloor=1994
⌊ log  2  1 ⌋ + ⌊ log  2  2 ⌋ + ⌊ log  2  3 ⌋ + ⋯ + ⌊ log  2  n ⌋ = 1 9 9 4 
(For real x , ⌊ x ⌋  x,\lfloor x\rfloorx , ⌊ x ⌋   is the greatest integer ≤ x  \leq x≤ x  .)
Solution: 
Let
S n = ⌊ 2 1 ⌋ + ⌊ 2 2 ⌋ + ⌊ 2 3 ⌋ + ⋯ + ⌊ 2 n ⌋  S_{n}=\left\lfloor\log _{2} 1\right\rfloor+\left\lfloor\log _{2} 2\right\rfloor+\left\lfloor\log _{2} 3\right\rfloor+\cdots+\left\lfloor\log _{2} n\right\rfloor
S n  = ⌊ log  2  1 ⌋ + ⌊ log  2  2 ⌋ + ⌊ log  2  3 ⌋ + ⋯ + ⌊ log  2  n ⌋ 
Note that, for nonnegative integer k  kk  , there are 2 k  2^{k}2 k   positive integers x  xx   for which ⌊ 2 x ⌋ = k  \left\lfloor\log _{2} x\right\rfloor=k⌊ log  2  x ⌋ = k  , namely x = 2 k , 2 k + 1 , … , 2 k + 1 − 1  x=2^{k}, 2^{k}+1, \ldots, 2^{k+1}-1x = 2 k , 2 k + 1 , … , 2 k + 1 − 1  . Thus, if r  rr   is a positive integer,
S 2 r − 1 = 0 + ( 1 + 1 ) + ( 2 + 2 + 2 + 2 ) + ⋯ + ( ( r − 1 ) + ( r − 1 ) + ⋯ + ( r − 1 ) ⏟ 2 r − 1  terms  )  S_{2^{r}-1}=0+(1+1)+(2+2+2+2)+\cdots+(\underbrace{(r-1)+(r-1)+\cdots+(r-1)}_{2^{r-1} \text { terms }})
S 2 r − 1  = 0 + ( 1 + 1 ) + ( 2 + 2 + 2 + 2 ) + ⋯ + ( 2 r − 1  terms  ( r − 1 ) + ( r − 1 ) + ⋯ + ( r − 1 )   ) 
The right side of this expression has
2 r − 2 1  terms  ≥ 1 2 r − 2 2  terms  ≥ 2 2 r − 2 3  terms  ≥ 3 2 r − 2 r − 2  terms  ≥ r − 2 2 r − 2 r − 1  terms  = r − 1.  \begin{gathered}
2^{r}-2^{1} \text { terms } \geq 1 \\
2^{r}-2^{2} \text { terms } \geq 2 \\
2^{r}-2^{3} \text { terms } \geq 3 \\
\vdots \\
2^{r}-2^{r-2} \text { terms } \geq r-2 \\
2^{r}-2^{r-1} \text { terms }=r-1.
\end{gathered}
2 r − 2 1  terms  ≥ 1 2 r − 2 2  terms  ≥ 2 2 r − 2 3  terms  ≥ 3 ⋮ 2 r − 2 r − 2  terms  ≥ r − 2 2 r − 2 r − 1  terms  = r − 1 .  
It follows that
S 2 r − 1 = ( 2 r − 2 1 ) + ( 2 r − 2 2 ) + ( 2 r − 2 3 ) + ⋯ + ( 2 r − 2 r − 1 ) = ( r − 1 ) 2 r − ( 2 r − 2 ) = ( r − 2 ) 2 r + 2  \begin{aligned}
S_{2^{r}-1} &=\left(2^{r}-2^{1}\right)+\left(2^{r}-2^{2}\right)+\left(2^{r}-2^{3}\right)+\cdots+\left(2^{r}-2^{r-1}\right) \\
&=(r-1) 2^{r}-\left(2^{r}-2\right) \\
&=(r-2) 2^{r}+2
\end{aligned}
S 2 r − 1   = ( 2 r − 2 1 ) + ( 2 r − 2 2 ) + ( 2 r − 2 3 ) + ⋯ + ( 2 r − 2 r − 1 ) = ( r − 1 ) 2 r − ( 2 r − 2 ) = ( r − 2 ) 2 r + 2  
Taking r = 8  r=8r = 8   in this last equation we obtain S 255 = 1538 < 1994  S_{255}=1538<1994S 2 5 5  = 1 5 3 8 < 1 9 9 4  . Setting r = 9  r=9r = 9   we find S 511 = 3586 > 1994  S_{511}=3586>1994S 5 1 1  = 3 5 8 6 > 1 9 9 4  . Hence, if S n = 1994  S_{n}=1994S n  = 1 9 9 4  , then 255 = 2 8 − 1 < n < 2 9 − 1  255=2^{8}-1<n<2^{9}-12 5 5 = 2 8 − 1 < n < 2 9 − 1  . Therefore
1994 = S n = S 255 + ( n − 255 ) 8 = 8 n − 502  1994=S_{n}=S_{255}+(n-255) 8=8 n-502
1 9 9 4 = S n  = S 2 5 5  + ( n − 2 5 5 ) 8 = 8 n − 5 0 2 
and this yields n = 312  n=\boxed{312}n = 3 1 2   .
 
The problems on this page are the property of the MAA's American Mathematics Competitions