Problem:
Find the smallest positive integer solution to tan β‘ 19 x β = cos β‘ 9 6 β + sin β‘ 9 6 β cos β‘ 9 6 β β sin β‘ 9 6 β \tan 19 x^{\circ}=\frac{\cos 96^{\circ}+\sin 96^{\circ}}{\cos 96^{\circ}-\sin 96^{\circ}}tan 1 9 x β = c o s 9 6 β β s i n 9 6 β c o s 9 6 β + s i n 9 6 β β .
Solution:
The identity
cos β‘ A + sin β‘ A cos β‘ A β sin β‘ A = 1 + tan β‘ A 1 β tan β‘ A = tan β‘ 4 5 β + tan β‘ A 1 β tan β‘ 4 5 β tan β‘ A = tan β‘ ( 4 5 β + A ) \frac{\cos A+\sin A}{\cos A-\sin A}=\frac{1+\tan A}{1-\tan A}=\frac{\tan 45^{\circ}+\tan A}{1-\tan 45^{\circ} \tan A}=\tan \left(45^{\circ}+A\right)
cos A β sin A cos A + sin A β = 1 β tan A 1 + tan A β = 1 β tan 4 5 β tan A tan 4 5 β + tan A β = tan ( 4 5 β + A )
implies that the given equation is equivalent to tan β‘ 19 x β = tan β‘ ( 4 5 β + 9 6 β ) = tan β‘ 14 1 β \tan 19 x^{\circ}=\tan \left(45^{\circ}+96^{\circ}\right)=\tan 141^{\circ}tan 1 9 x β = tan ( 4 5 β + 9 6 β ) = tan 1 4 1 β . It follows that 19 x 19 x1 9 x must differ from 141 1411 4 1 by a multiple of 180 1801 8 0 ; that is,
19 x = 141 + 180 y = 19 ( 7 + 9 y ) + ( 8 + 9 y ) 19 x=141+180 y=19(7+9 y)+(8+9 y)
1 9 x = 1 4 1 + 1 8 0 y = 1 9 ( 7 + 9 y ) + ( 8 + 9 y )
for some integer y yy . The smallest positive x xx corresponds to the smallest nonnegative y yy for which 8 + 9 y = 19 z 8+9 y=19 z8 + 9 y = 1 9 z for some positive integer z zz . Solve for y yy to obtain y = 2 z + z β 8 9 y=2 z+\frac{z-8}{9}y = 2 z + 9 z β 8 β , from which it follows that the minimum value for z zz is 8 88 . Hence y = 16 y=16y = 1 6 and x = 159 x=\boxed{159}x = 1 5 9 β .
OR \textbf{OR}
OR
Because sin β‘ 9 6 β = cos β‘ 6 β \sin 96^{\circ}=\cos 6^{\circ}sin 9 6 β = cos 6 β , the given equation is equivalent to
tan β‘ 19 x β = cos β‘ 9 6 β + cos β‘ 6 β cos β‘ 9 6 β β cos β‘ 6 β \tan 19 x^{\circ}=\frac{\cos 96^{\circ}+\cos 6^{\circ}}{\cos 96^{\circ}-\cos 6^{\circ}}
tan 1 9 x β = cos 9 6 β β cos 6 β cos 9 6 β + cos 6 β β
The identities
cos β‘ ( A + B ) + cos β‘ ( A β B ) = 2 cos β‘ A cos β‘ B \cos (A+B)+\cos (A-B)=2 \cos A \cos B
cos ( A + B ) + cos ( A β B ) = 2 cos A cos B
and
cos β‘ ( A + B ) β cos β‘ ( A β B ) = β 2 sin β‘ A sin β‘ B \cos (A+B)-\cos (A-B)=-2 \sin A \sin B
cos ( A + B ) β cos ( A β B ) = β 2 sin A sin B
imply that
cos β‘ 9 6 β + cos β‘ 6 β cos β‘ 9 6 β β cos β‘ 6 β = 2 cos β‘ 5 1 β cos β‘ 4 5 β β 2 sin β‘ 5 1 β sin β‘ 4 5 β = β sin β‘ 3 9 β cos β‘ 3 9 β \frac{\cos 96^{\circ}+\cos 6^{\circ}}{\cos 96^{\circ}-\cos 6^{\circ}}=\frac{2 \cos 51^{\circ} \cos 45^{\circ}}{-2 \sin 51^{\circ} \sin 45^{\circ}}=-\frac{\sin 39^{\circ}}{\cos 39^{\circ}}
cos 9 6 β β cos 6 β cos 9 6 β + cos 6 β β = β 2 sin 5 1 β sin 4 5 β 2 cos 5 1 β cos 4 5 β β = β cos 3 9 β sin 3 9 β β
It follows that the given equation is equivalent to
tan β‘ 19 x β = β tan β‘ 3 9 β = tan β‘ 14 1 β \tan 19 x^{\circ}=-\tan 39^{\circ}=\tan 141^{\circ}
tan 1 9 x β = β tan 3 9 β = tan 1 4 1 β
The solution continues as above.
OR \textbf{OR}
OR
Notice that A cos β‘ x + B sin β‘ x A \cos x+B \sin xA cos x + B sin x is equivalent to C cos β‘ ( x β Ο ) C \cos (x-\phi)C cos ( x β Ο ) , where C 2 = A 2 + B 2 C^{2}=A^{2}+B^{2}C 2 = A 2 + B 2 , A = C cos β‘ Ο A=C \cos \phiA = C cos Ο , and B = C sin β‘ Ο B=C \sin \phiB = C sin Ο . Hence the given equation is equivalent to
tan β‘ 19 x β = 2 cos β‘ ( 9 6 β β 4 5 β ) 2 cos β‘ ( 9 6 β + 4 5 β ) = cos β‘ 5 1 β cos β‘ 14 1 β = sin β‘ 14 1 β cos β‘ 14 1 β = tan β‘ 14 1 β \tan 19 x^{\circ}=\frac{\sqrt{2} \cos \left(96^{\circ}-45^{\circ}\right)}{\sqrt{2} \cos \left(96^{\circ}+45^{\circ}\right)}=\frac{\cos 51^{\circ}}{\cos 141^{\circ}}=\frac{\sin 141^{\circ}}{\cos 141^{\circ}}=\tan 141^{\circ}
tan 1 9 x β = 2 β cos ( 9 6 β + 4 5 β ) 2 β cos ( 9 6 β β 4 5 β ) β = cos 1 4 1 β cos 5 1 β β = cos 1 4 1 β sin 1 4 1 β β = tan 1 4 1 β
The solution continues as before.
The problems on this page are the property of the MAA's American Mathematics Competitions