Problem:  
Find the smallest positive integer solution to tan β‘ 19 x β = cos β‘ 9 6 β + sin β‘ 9 6 β cos β‘ 9 6 β β sin β‘ 9 6 β  \tan 19 x^{\circ}=\frac{\cos 96^{\circ}+\sin 96^{\circ}}{\cos 96^{\circ}-\sin 96^{\circ}}tan 1 9 x β = c o s 9 6 β β s i n 9 6 β c o s 9 6 β + s i n 9 6 β β  .
Solution: 
The identity
cos β‘ A + sin β‘ A cos β‘ A β sin β‘ A = 1 + tan β‘ A 1 β tan β‘ A = tan β‘ 4 5 β + tan β‘ A 1 β tan β‘ 4 5 β tan β‘ A = tan β‘ ( 4 5 β + A )  \frac{\cos A+\sin A}{\cos A-\sin A}=\frac{1+\tan A}{1-\tan A}=\frac{\tan 45^{\circ}+\tan A}{1-\tan 45^{\circ} \tan A}=\tan \left(45^{\circ}+A\right)
cos A β sin A cos A + sin A β = 1 β tan A 1 + tan A β = 1 β tan 4 5 β tan A tan 4 5 β + tan A β = tan ( 4 5 β + A ) 
implies that the given equation is equivalent to tan β‘ 19 x β = tan β‘ ( 4 5 β + 9 6 β ) = tan β‘ 14 1 β  \tan 19 x^{\circ}=\tan \left(45^{\circ}+96^{\circ}\right)=\tan 141^{\circ}tan 1 9 x β = tan ( 4 5 β + 9 6 β ) = tan 1 4 1 β  . It follows that 19 x  19 x1 9 x   must differ from 141  1411 4 1   by a multiple of 180  1801 8 0  ; that is,
19 x = 141 + 180 y = 19 ( 7 + 9 y ) + ( 8 + 9 y )  19 x=141+180 y=19(7+9 y)+(8+9 y)
1 9 x = 1 4 1 + 1 8 0 y = 1 9 ( 7 + 9 y ) + ( 8 + 9 y ) 
for some integer y  yy  . The smallest positive x  xx   corresponds to the smallest nonnegative y  yy   for which 8 + 9 y = 19 z  8+9 y=19 z8 + 9 y = 1 9 z   for some positive integer z  zz  . Solve for y  yy   to obtain y = 2 z + z β 8 9  y=2 z+\frac{z-8}{9}y = 2 z + 9 z β 8 β  , from which it follows that the minimum value for z  zz   is 8  88  . Hence y = 16  y=16y = 1 6   and x = 159  x=\boxed{159}x = 1 5 9 β  .
OR  \textbf{OR}
OR 
Because sin β‘ 9 6 β = cos β‘ 6 β  \sin 96^{\circ}=\cos 6^{\circ}sin 9 6 β = cos 6 β  , the given equation is equivalent to
tan β‘ 19 x β = cos β‘ 9 6 β + cos β‘ 6 β cos β‘ 9 6 β β cos β‘ 6 β  \tan 19 x^{\circ}=\frac{\cos 96^{\circ}+\cos 6^{\circ}}{\cos 96^{\circ}-\cos 6^{\circ}}
tan 1 9 x β = cos 9 6 β β cos 6 β cos 9 6 β + cos 6 β β 
The identities
cos β‘ ( A + B ) + cos β‘ ( A β B ) = 2 cos β‘ A cos β‘ B  \cos (A+B)+\cos (A-B)=2 \cos A \cos B
cos ( A + B ) + cos ( A β B ) = 2 cos A cos B 
and
cos β‘ ( A + B ) β cos β‘ ( A β B ) = β 2 sin β‘ A sin β‘ B  \cos (A+B)-\cos (A-B)=-2 \sin A \sin B
cos ( A + B ) β cos ( A β B ) = β 2 sin A sin B 
imply that
cos β‘ 9 6 β + cos β‘ 6 β cos β‘ 9 6 β β cos β‘ 6 β = 2 cos β‘ 5 1 β cos β‘ 4 5 β β 2 sin β‘ 5 1 β sin β‘ 4 5 β = β sin β‘ 3 9 β cos β‘ 3 9 β  \frac{\cos 96^{\circ}+\cos 6^{\circ}}{\cos 96^{\circ}-\cos 6^{\circ}}=\frac{2 \cos 51^{\circ} \cos 45^{\circ}}{-2 \sin 51^{\circ} \sin 45^{\circ}}=-\frac{\sin 39^{\circ}}{\cos 39^{\circ}}
cos 9 6 β β cos 6 β cos 9 6 β + cos 6 β β = β 2 sin 5 1 β sin 4 5 β 2 cos 5 1 β cos 4 5 β β = β cos 3 9 β sin 3 9 β β 
It follows that the given equation is equivalent to
tan β‘ 19 x β = β tan β‘ 3 9 β = tan β‘ 14 1 β  \tan 19 x^{\circ}=-\tan 39^{\circ}=\tan 141^{\circ}
tan 1 9 x β = β tan 3 9 β = tan 1 4 1 β 
The solution continues as above.
OR  \textbf{OR}
OR 
Notice that A cos β‘ x + B sin β‘ x  A \cos x+B \sin xA cos x + B sin x   is equivalent to C cos β‘ ( x β Ο )  C \cos (x-\phi)C cos ( x β Ο )  , where C 2 = A 2 + B 2  C^{2}=A^{2}+B^{2}C 2 = A 2 + B 2  , A = C cos β‘ Ο  A=C \cos \phiA = C cos Ο  , and B = C sin β‘ Ο  B=C \sin \phiB = C sin Ο  . Hence the given equation is equivalent to
tan β‘ 19 x β = 2 cos β‘ ( 9 6 β β 4 5 β ) 2 cos β‘ ( 9 6 β + 4 5 β ) = cos β‘ 5 1 β cos β‘ 14 1 β = sin β‘ 14 1 β cos β‘ 14 1 β = tan β‘ 14 1 β  \tan 19 x^{\circ}=\frac{\sqrt{2} \cos \left(96^{\circ}-45^{\circ}\right)}{\sqrt{2} \cos \left(96^{\circ}+45^{\circ}\right)}=\frac{\cos 51^{\circ}}{\cos 141^{\circ}}=\frac{\sin 141^{\circ}}{\cos 141^{\circ}}=\tan 141^{\circ}
tan 1 9 x β = 2 β cos ( 9 6 β + 4 5 β ) 2 β cos ( 9 6 β β 4 5 β ) β = cos 1 4 1 β cos 5 1 β β = cos 1 4 1 β sin 1 4 1 β β = tan 1 4 1 β 
The solution continues as before.
 
The problems on this page are the property of the MAA's American Mathematics Competitions