Problem:  
In triangle A B C , A B = 30 , A C = 6  A B C, A B=\sqrt{30}, A C=\sqrt{6}A B C , A B = 3 0 β , A C = 6 β  , and B C = 15  B C=\sqrt{15}B C = 1 5 β  . There is a point D  DD   for which A D βΎ  \overline{A D}A D   bisects B C βΎ  \overline{B C}B C   and β  A D B  \angle A D Bβ  A D B   is a right angle. The ratio
Area β‘ ( β³ A D B ) Area β‘ ( β³ A B C )  \frac{\operatorname{Area}(\triangle A D B)}{\operatorname{Area}(\triangle A B C)}
A r e a ( β³ A B C ) A r e a ( β³ A D B ) β 
can be written in the form m / n  m / nm / n  , where m  mm   and n  nn   are relatively prime positive integers. Find m + n  m+nm + n  .
Solution: 
Let A B = c , A C = b , B C = a  A B=c, A C=b, B C=aA B = c , A C = b , B C = a  , and notice that a 2 + b 2 < c 2  a^{2}+b^{2}<c^{2}a 2 + b 2 < c 2  . It follows that β  C  \angle Cβ  C   is obtuse and that D  DD   lies outside β³ A B C  \triangle A B Cβ³ A B C  . It is given that line A D  A DA D   intersects B C βΎ  \overline{B C}B C   at E  EE  , the midpoint of B C βΎ  \overline{B C}B C  . Notice that B D βΎ  \overline{B D}B D   is the altitude from B  BB   in β³ A B E  \triangle A B Eβ³ A B E  . Thus
Area β‘ ( β³ A D B ) Area β‘ ( β³ A B C ) = Area β‘ ( β³ A D B ) 2 Area β‘ ( β³ A B E ) = 1 2 ( B D ) ( A D ) 2 β
 1 2 ( B D ) ( A E ) = A D 2 A E (1)  \frac{\operatorname{Area}(\triangle A D B)}{\operatorname{Area}(\triangle A B C)}=\frac{\operatorname{Area}(\triangle A D B)}{2 \operatorname{Area}(\triangle A B E)}=\frac{\frac{1}{2}(B D)(A D)}{2 \cdot \frac{1}{2}(B D)(A E)}=\frac{A D}{2 A E} \tag{1}
A r e a ( β³ A B C ) A r e a ( β³ A D B ) β = 2 A r e a ( β³ A B E ) A r e a ( β³ A D B ) β = 2 β
 2 1 β ( B D ) ( A E ) 2 1 β ( B D ) ( A D ) β = 2 A E A D β ( 1 ) 
To find A E  A EA E  , apply the Law of Cosines twice to obtain
b 2 = ( A E ) 2 + ( a 2 ) 2 β 2 ( A E ) ( a 2 ) cos β‘ β  C E A  b^{2}=(A E)^{2}+\left(\frac{a}{2}\right)^{2}-2(A E)\left(\frac{a}{2}\right) \cos \angle C E A
b 2 = ( A E ) 2 + ( 2 a β ) 2 β 2 ( A E ) ( 2 a β ) cos β  C E A 
and
c 2 = ( A E ) 2 + ( a 2 ) 2 β 2 ( A E ) ( a 2 ) cos β‘ β  A E B  c^{2}=(A E)^{2}+\left(\frac{a}{2}\right)^{2}-2(A E)\left(\frac{a}{2}\right) \cos \angle A E B
c 2 = ( A E ) 2 + ( 2 a β ) 2 β 2 ( A E ) ( 2 a β ) cos β  A E B 
Now add these two equations, using the fact that cos β‘ β  C E A + cos β‘ β  A E B = 0  \cos \angle C E A+\cos \angle A E B=0cos β  C E A + cos β  A E B = 0  , and solve for A E  A EA E  . The result is
A E = 1 2 2 b 2 + 2 c 2 β a 2  A E=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}
A E = 2 1 β 2 b 2 + 2 c 2 β a 2 β 
Apply the Pythagorean Theorem to find that
( A D ) 2 + ( B D ) 2 = c 2  (A D)^{2}+(B D)^{2}=c^{2}
( A D ) 2 + ( B D ) 2 = c 2 
and
( D E ) 2 + ( B D ) 2 = 1 4 a 2  (D E)^{2}+(B D)^{2}=\frac{1}{4} a^{2}
( D E ) 2 + ( B D ) 2 = 4 1 β a 2 
Substitute A D = A E + E D  A D=A E+E DA D = A E + E D   and subtract
to find ( A E ) 2 + 2 ( A E ) ( E D ) = c 2 β 1 4 a 2  (A E)^{2}+2(A E)(E D)=c^{2}-\frac{1}{4} a^{2}( A E ) 2 + 2 ( A E ) ( E D ) = c 2 β 4 1 β a 2  .
Thus
E D 2 A E = c 2 β 1 4 a 2 β ( A E ) 2 4 ( A E ) 2 = c 2 β b 2 2 ( 2 b 2 + 2 c 2 β a 2 )  \frac{E D}{2 A E}=\frac{c^{2}-\frac{1}{4} a^{2}-(A E)^{2}}{4(A E)^{2}}=\frac{c^{2}-b^{2}}{2\left(2 b^{2}+2 c^{2}-a^{2}\right)}
2 A E E D β = 4 ( A E ) 2 c 2 β 4 1 β a 2 β ( A E ) 2 β = 2 ( 2 b 2 + 2 c 2 β a 2 ) c 2 β b 2 β 
Return to ( 1 )  (1)( 1 )   to find that
Area β‘ ( β³ A D B ) Area β‘ ( β³ A B C ) = A E + E D 2 A E = 1 2 + E D 2 A E  \frac{\operatorname{Area}(\triangle A D B)}{\operatorname{Area}(\triangle A B C)}=\frac{A E+E D}{2 A E}=\frac{1}{2}+\frac{E D}{2 A E}
A r e a ( β³ A B C ) A r e a ( β³ A D B ) β = 2 A E A E + E D β = 2 1 β + 2 A E E D β 
When a = 15 , b = 6  a=\sqrt{15}, b=\sqrt{6}a = 1 5 β , b = 6 β  , and c = 30  c=\sqrt{30}c = 3 0 β  , the desired ratio of areas is 1 2 + 4 19 = 27 38  \frac{1}{2}+\frac{4}{19}=\frac{27}{38}2 1 β + 1 9 4 β = 3 8 2 7 β  . Hence m + n = 65  m+n=\boxed{65}m + n = 6 5 β  .
 
The problems on this page are the property of the MAA's American Mathematics Competitions