Problem:
In triangle A B C , A B = 30 , A C = 6 A B C, A B=\sqrt{30}, A C=\sqrt{6}A B C , A B = 3 0 β , A C = 6 β , and B C = 15 B C=\sqrt{15}B C = 1 5 β . There is a point D DD for which A D βΎ \overline{A D}A D bisects B C βΎ \overline{B C}B C and β A D B \angle A D Bβ A D B is a right angle. The ratio
Area β‘ ( β³ A D B ) Area β‘ ( β³ A B C ) \frac{\operatorname{Area}(\triangle A D B)}{\operatorname{Area}(\triangle A B C)}
A r e a ( β³ A B C ) A r e a ( β³ A D B ) β
can be written in the form m / n m / nm / n , where m mm and n nn are relatively prime positive integers. Find m + n m+nm + n .
Solution:
Let A B = c , A C = b , B C = a A B=c, A C=b, B C=aA B = c , A C = b , B C = a , and notice that a 2 + b 2 < c 2 a^{2}+b^{2}<c^{2}a 2 + b 2 < c 2 . It follows that β C \angle Cβ C is obtuse and that D DD lies outside β³ A B C \triangle A B Cβ³ A B C . It is given that line A D A DA D intersects B C βΎ \overline{B C}B C at E EE , the midpoint of B C βΎ \overline{B C}B C . Notice that B D βΎ \overline{B D}B D is the altitude from B BB in β³ A B E \triangle A B Eβ³ A B E . Thus
Area β‘ ( β³ A D B ) Area β‘ ( β³ A B C ) = Area β‘ ( β³ A D B ) 2 Area β‘ ( β³ A B E ) = 1 2 ( B D ) ( A D ) 2 β
1 2 ( B D ) ( A E ) = A D 2 A E (1) \frac{\operatorname{Area}(\triangle A D B)}{\operatorname{Area}(\triangle A B C)}=\frac{\operatorname{Area}(\triangle A D B)}{2 \operatorname{Area}(\triangle A B E)}=\frac{\frac{1}{2}(B D)(A D)}{2 \cdot \frac{1}{2}(B D)(A E)}=\frac{A D}{2 A E} \tag{1}
A r e a ( β³ A B C ) A r e a ( β³ A D B ) β = 2 A r e a ( β³ A B E ) A r e a ( β³ A D B ) β = 2 β
2 1 β ( B D ) ( A E ) 2 1 β ( B D ) ( A D ) β = 2 A E A D β ( 1 )
To find A E A EA E , apply the Law of Cosines twice to obtain
b 2 = ( A E ) 2 + ( a 2 ) 2 β 2 ( A E ) ( a 2 ) cos β‘ β C E A b^{2}=(A E)^{2}+\left(\frac{a}{2}\right)^{2}-2(A E)\left(\frac{a}{2}\right) \cos \angle C E A
b 2 = ( A E ) 2 + ( 2 a β ) 2 β 2 ( A E ) ( 2 a β ) cos β C E A
and
c 2 = ( A E ) 2 + ( a 2 ) 2 β 2 ( A E ) ( a 2 ) cos β‘ β A E B c^{2}=(A E)^{2}+\left(\frac{a}{2}\right)^{2}-2(A E)\left(\frac{a}{2}\right) \cos \angle A E B
c 2 = ( A E ) 2 + ( 2 a β ) 2 β 2 ( A E ) ( 2 a β ) cos β A E B
Now add these two equations, using the fact that cos β‘ β C E A + cos β‘ β A E B = 0 \cos \angle C E A+\cos \angle A E B=0cos β C E A + cos β A E B = 0 , and solve for A E A EA E . The result is
A E = 1 2 2 b 2 + 2 c 2 β a 2 A E=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}
A E = 2 1 β 2 b 2 + 2 c 2 β a 2 β
Apply the Pythagorean Theorem to find that
( A D ) 2 + ( B D ) 2 = c 2 (A D)^{2}+(B D)^{2}=c^{2}
( A D ) 2 + ( B D ) 2 = c 2
and
( D E ) 2 + ( B D ) 2 = 1 4 a 2 (D E)^{2}+(B D)^{2}=\frac{1}{4} a^{2}
( D E ) 2 + ( B D ) 2 = 4 1 β a 2
Substitute A D = A E + E D A D=A E+E DA D = A E + E D and subtract
to find ( A E ) 2 + 2 ( A E ) ( E D ) = c 2 β 1 4 a 2 (A E)^{2}+2(A E)(E D)=c^{2}-\frac{1}{4} a^{2}( A E ) 2 + 2 ( A E ) ( E D ) = c 2 β 4 1 β a 2 .
Thus
E D 2 A E = c 2 β 1 4 a 2 β ( A E ) 2 4 ( A E ) 2 = c 2 β b 2 2 ( 2 b 2 + 2 c 2 β a 2 ) \frac{E D}{2 A E}=\frac{c^{2}-\frac{1}{4} a^{2}-(A E)^{2}}{4(A E)^{2}}=\frac{c^{2}-b^{2}}{2\left(2 b^{2}+2 c^{2}-a^{2}\right)}
2 A E E D β = 4 ( A E ) 2 c 2 β 4 1 β a 2 β ( A E ) 2 β = 2 ( 2 b 2 + 2 c 2 β a 2 ) c 2 β b 2 β
Return to ( 1 ) (1)( 1 ) to find that
Area β‘ ( β³ A D B ) Area β‘ ( β³ A B C ) = A E + E D 2 A E = 1 2 + E D 2 A E \frac{\operatorname{Area}(\triangle A D B)}{\operatorname{Area}(\triangle A B C)}=\frac{A E+E D}{2 A E}=\frac{1}{2}+\frac{E D}{2 A E}
A r e a ( β³ A B C ) A r e a ( β³ A D B ) β = 2 A E A E + E D β = 2 1 β + 2 A E E D β
When a = 15 , b = 6 a=\sqrt{15}, b=\sqrt{6}a = 1 5 β , b = 6 β , and c = 30 c=\sqrt{30}c = 3 0 β , the desired ratio of areas is 1 2 + 4 19 = 27 38 \frac{1}{2}+\frac{4}{19}=\frac{27}{38}2 1 β + 1 9 4 β = 3 8 2 7 β . Hence m + n = 65 m+n=\boxed{65}m + n = 6 5 β .
The problems on this page are the property of the MAA's American Mathematics Competitions