Problem:
Given a nonnegative real number x xx , let β¨ x β© \langle x\rangleβ¨ x β© denote the fractional part of x xx ; that is, β¨ x β© = x β β x β \langle x\rangle=x-\lfloor x\rfloorβ¨ x β© = x β β x β , where β x β \lfloor x\rfloorβ x β denotes the greatest integer less than or equal to x xx . Suppose that a aa is positive, β¨ a β 1 β© = β¨ a 2 β© \left\langle a^{-1}\right\rangle=\left\langle a^{2}\right\rangleβ¨ a β 1 β© = β¨ a 2 β© , and 2 < a 2 < 3 2<a^{2}<32 < a 2 < 3 . Find the value of a 12 β 144 a β 1 a^{12}-144 a^{-1}a 1 2 β 1 4 4 a β 1 .
Solution:
Notice first that the given data imply that β¨ a β 1 β© = a β 1 \left\langle a^{-1}\right\rangle=a^{-1}β¨ a β 1 β© = a β 1 and β¨ a 2 β© = a 2 β 2 \left\langle a^{2}\right\rangle=a^{2}-2β¨ a 2 β© = a 2 β 2 . Hence a aa must satisfy the equation a β 1 = a 2 β 2 a^{-1}=a^{2}-2a β 1 = a 2 β 2 , or a 3 β 2 a β 1 = 0 a^{3}-2 a-1=0a 3 β 2 a β 1 = 0 . This factors as
( a + 1 ) ( a 2 β a β 1 ) = 0 (a+1)\left(a^{2}-a-1\right)=0
( a + 1 ) ( a 2 β a β 1 ) = 0
whose only positive root is a = 1 2 ( 1 + 5 ) a=\frac{1}{2}(1+\sqrt{5})a = 2 1 β ( 1 + 5 β ) . Now use the relations a 2 = a + 1 a^{2}=a+1a 2 = a + 1 and a 3 = 2 a + 1 a^{3}=2 a+1a 3 = 2 a + 1 to calculate
a 6 = 8 a + 5 a 12 = 144 a + 89 a 13 = 233 a + 144 \begin{aligned}
a^{6} &=8 a+5 \\
a^{12} &=144 a+89 \\
a^{13} &=233 a+144
\end{aligned}
a 6 a 1 2 a 1 3 β = 8 a + 5 = 1 4 4 a + 8 9 = 2 3 3 a + 1 4 4 β
from which it follows that a 12 β 144 a β 1 = a 13 β 144 a = 233 a^{12}-144 a^{-1}=\frac{a^{13}-144}{a}=\boxed{233}a 1 2 β 1 4 4 a β 1 = a a 1 3 β 1 4 4 β = 2 3 3 β .
OR \textbf{OR}
OR
As above, show that a = 1 2 ( 1 + 5 ) a=\frac{1}{2}(1+\sqrt{5})a = 2 1 β ( 1 + 5 β ) . The cubic equation yields a 3 = 2 a + 1 = 2 + 5 a^{3}=2 a+1=2+\sqrt{5}a 3 = 2 a + 1 = 2 + 5 β . It follows that a 6 = 9 + 4 5 a^{6}=9+4 \sqrt{5}a 6 = 9 + 4 5 β and a 12 = 161 + 72 5 a^{12}=161+72 \sqrt{5}a 1 2 = 1 6 1 + 7 2 5 β . The cubic equation also implies that 144 a β 1 = 144 ( a 2 β 2 ) = β 72 + 72 5 144 a^{-1}=144\left(a^{2}-2\right)=-72+72 \sqrt{5}1 4 4 a β 1 = 1 4 4 ( a 2 β 2 ) = β 7 2 + 7 2 5 β , hence a 12 β 144 a β 1 = 233 a^{12}-144 a^{-1}=\boxed{233}a 1 2 β 1 4 4 a β 1 = 2 3 3 β .
OR \textbf{OR}
OR
As above, a = ( 1 + 5 ) / 2 a=(1+\sqrt{5}) / 2a = ( 1 + 5 β ) / 2 . Let b = β a β 1 b=-a^{-1}b = β a β 1 and use Binet's formula for Fibonacci numbers to calculate
F n = a n β b n 5 = a n β b n a β b = a n β 1 + a n β 2 b + β― + a b n β 2 + b n β 1 F_{n}=\frac{a^{n}-b^{n}}{\sqrt{5}}=\frac{a^{n}-b^{n}}{a-b}=a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}
F n β = 5 β a n β b n β = a β b a n β b n β = a n β 1 + a n β 2 b + β― + a b n β 2 + b n β 1
Thus
F n = a n β 1 + F n β 1 b = a n β 1 β F n β 1 a β 1 F_{n}=a^{n-1}+F_{n-1} b=a^{n-1}-F_{n-1} a^{-1}
F n β = a n β 1 + F n β 1 β b = a n β 1 β F n β 1 β a β 1
In particular,
233 = F 13 = a 12 β F 12 a β 1 = a 12 β 144 a β 1 \boxed{233}=F_{13}=a^{12}-F_{12} a^{-1}=a^{12}-144 a^{-1}
2 3 3 β = F 1 3 β = a 1 2 β F 1 2 β a β 1 = a 1 2 β 1 4 4 a β 1
The problems on this page are the property of the MAA's American Mathematics Competitions