Problem: Find the least positive integer nnn such that
1sinβ‘45βsinβ‘46β+1sinβ‘47βsinβ‘48β+β―+1sinβ‘133βsinβ‘134β=1sinβ‘nβ.\frac 1{\sin 45^\circ\sin 46^\circ}+\frac 1{\sin 47^\circ\sin 48^\circ}+\cdots+\frac 1{\sin 133^\circ\sin 134^\circ}=\frac 1{\sin n^\circ}. sin45βsin46β1β+sin47βsin48β1β+β―+sin133βsin134β1β=sinnβ1β.
Solution:
The problems on this page are the property of the MAA's American Mathematics Competitions