are (x1β,y1β) and (x2β,y2β). Find log30β(x1βy1βx2βy2β).
Solution:
Let p=log225βx=1/logxβ225 and q=log64βy=1/logyβ64. The given equations then take the form p+q=4 and p1ββq1β=1, whose solutions are (p1β,q1β)=(3+5β,1β5β) and (p2β,q2β)=(3β5β,1+5β). Thus x1βx2β=225p1β225p2β=225p1β+p2β=2256,y1βy2β=64q1β+q2β=642, and log30β(x1βy1βx2βy2β)=log30β(2256642)=log30β(1512212)=log30β3012=12β.