Problem:
Given that log10βsinx+log10βcosx=β1 and that log10β(sinx+cosx)=21β(log10βnβ1), find n.
Solution:
Use logarithm properties to obtain log(sinxcosx)=β1, and then sinxcosx= 1/10. Note that
(sinx+cosx)2=sin2x+cos2x+2sinxcosx=1+102β=1012β
Thus
2log(sinx+cosx)=log1012β=log12β1
so
log(sinx+cosx)=21β(log12β1)
and n=12β.
The problems on this page are the property of the MAA's American Mathematics Competitions