Problem:
Let C CC be the coefficient of x 2 x^{2}x 2 in the expansion of the product
( 1 β x ) ( 1 + 2 x ) ( 1 β 3 x ) β¦ ( 1 + 14 x ) ( 1 β 15 x ) (1-x)(1+2 x)(1-3 x) \ldots(1+14 x)(1-15 x)
( 1 β x ) ( 1 + 2 x ) ( 1 β 3 x ) β¦ ( 1 + 1 4 x ) ( 1 β 1 5 x )
Find β£ C β£ |C|β£ C β£ .
Solution:
Each of the x 2 x^{2}x 2 -terms in the expansion of the product is obtained by multiplying the x xx -terms from two of the 15 151 5 factors of the product. The coefficient of the x 2 x^{2}x 2 -term is therefore the sum of the products of each pair of numbers in the set { β 1 , 2 , β 3 , β¦ , 14 , β 15 } \{-1,2,-3, \ldots, 14,-15\}{ β 1 , 2 , β 3 , β¦ , 1 4 , β 1 5 } . Note that, in general,
( a 1 + a 2 + β― + a n ) 2 = a 1 2 + a 2 2 + β― + a n 2 + 2 β
( β 1 β€ i < j β€ n a i a j ) \left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}+2 \cdot\left(\sum_{1 \leq i<j \leq n} a_{i} a_{j}\right)
( a 1 β + a 2 β + β― + a n β ) 2 = a 1 2 β + a 2 2 β + β― + a n 2 β + 2 β
( 1 β€ i < j β€ n β β a i β a j β )
Thus
C = β 1 β€ i < j β€ 15 ( β 1 ) i i ( β 1 ) j j = 1 2 ( ( β k = 1 15 ( β 1 ) k k ) 2 β β k = 1 15 k 2 ) = 1 2 ( ( β 8 ) 2 β 15 ( 15 + 1 ) ( 2 β
15 + 1 ) 6 ) = β 588 \begin{aligned}
C = \sum_{1 \leq i < j \leq 15} (-1)^{i} i (-1)^{j} j &= \frac{1}{2} \left( \left( \sum_{k=1}^{15} (-1)^{k} k \right)^{2} - \sum_{k=1}^{15} k^{2} \right) \\
&= \frac{1}{2} \left( (-8)^{2} - \frac{15(15+1)(2 \cdot 15+1)}{6} \right)= -588
\end{aligned}
C = 1 β€ i < j β€ 1 5 β β ( β 1 ) i i ( β 1 ) j j β = 2 1 β β β β ( k = 1 β 1 5 β ( β 1 ) k k ) 2 β k = 1 β 1 5 β k 2 β β β = 2 1 β ( ( β 8 ) 2 β 6 1 5 ( 1 5 + 1 ) ( 2 β
1 5 + 1 ) β ) = β 5 8 8 β
Hence β£ C β£ = 588 |C|=\boxed{588}β£ C β£ = 5 8 8 β .
OR \textbf{OR}
OR
Note that
f ( x ) = ( 1 β x ) ( 1 + 2 x ) ( 1 β 3 x ) β¦ ( 1 β 15 x ) = 1 + ( β 1 + 2 β 3 + β― β 15 ) x + C x 2 + β― = 1 β 8 x + C x 2 + β― \begin{aligned}
f(x) &=(1-x)(1+2 x)(1-3 x) \ldots(1-15 x) \\
&=1+(-1+2-3+\cdots-15) x+C x^{2}+\cdots \\
&=1-8 x+C x^{2}+\cdots
\end{aligned}
f ( x ) β = ( 1 β x ) ( 1 + 2 x ) ( 1 β 3 x ) β¦ ( 1 β 1 5 x ) = 1 + ( β 1 + 2 β 3 + β― β 1 5 ) x + C x 2 + β― = 1 β 8 x + C x 2 + β― β
Thus f ( β x ) = 1 + 8 x + C x 2 β β― f(-x)=1+8 x+C x^{2}-\cdotsf ( β x ) = 1 + 8 x + C x 2 β β― .
But f ( β x ) = ( 1 + x ) ( 1 β 2 x ) ( 1 + 3 x ) β¦ ( 1 + 15 x ) f(-x)=(1+x)(1-2 x)(1+3 x) \ldots(1+15 x)f ( β x ) = ( 1 + x ) ( 1 β 2 x ) ( 1 + 3 x ) β¦ ( 1 + 1 5 x ) , so
f ( x ) f ( β x ) = ( 1 β x 2 ) ( 1 β 4 x 2 ) ( 1 β 9 x 2 ) β¦ ( 1 β 225 x 2 ) = 1 β ( 1 2 + 2 2 + 3 2 + β― + 1 5 2 ) x 2 + β― \begin{aligned}
f(x) f(-x) &=\left(1-x^{2}\right)\left(1-4 x^{2}\right)\left(1-9 x^{2}\right) \ldots\left(1-225 x^{2}\right) \\
&=1-\left(1^{2}+2^{2}+3^{2}+\cdots+15^{2}\right) x^{2}+\cdots
\end{aligned}
f ( x ) f ( β x ) β = ( 1 β x 2 ) ( 1 β 4 x 2 ) ( 1 β 9 x 2 ) β¦ ( 1 β 2 2 5 x 2 ) = 1 β ( 1 2 + 2 2 + 3 2 + β― + 1 5 2 ) x 2 + β― β
Also f ( x ) f ( β x ) = ( 1 β 8 x + C x 2 + β― β ) ( 1 + 8 x + C x 2 β β― β ) = 1 + ( 2 C β 64 ) x 2 + β― f(x) f(-x)=\left(1-8 x+C x^{2}+\cdots\right)\left(1+8 x+C x^{2}-\cdots\right)=1+(2 C-64) x^{2}+\cdotsf ( x ) f ( β x ) = ( 1 β 8 x + C x 2 + β― ) ( 1 + 8 x + C x 2 β β― ) = 1 + ( 2 C β 6 4 ) x 2 + β― . Thus 2 C β 64 = β ( 1 2 + 2 2 + 3 3 + β― + 1 5 2 ) 2 C-64=-\left(1^{2}+2^{2}+3^{3}+\cdots+15^{2}\right)2 C β 6 4 = β ( 1 2 + 2 2 + 3 3 + β― + 1 5 2 ) , and, as above, β£ C β£ = 588 |C|=\boxed{588}β£ C β£ = 5 8 8 β .
The problems on this page are the property of the MAA's American Mathematics Competitions