Problem:
Let z 1 , z 2 , z 3 , β¦ , z 12 z_{1}, z_{2}, z_{3}, \ldots, z_{12}z 1 β , z 2 β , z 3 β , β¦ , z 1 2 β be the 12 zeros of the polynomial z 12 β 2 36 z^{12}-2^{36}z 1 2 β 2 3 6 . For each j jj , let w j w_{j}w j β be one of z j z_{j}z j β or i z j i z_{j}i z j β . Then the maximum possible value of the real part of β j = 1 12 w j \sum_{j=1}^{12} w_{j}β j = 1 1 2 β w j β can be written as m + n m+\sqrt{n}m + n β , where m mm and n nn are positive integers. Find m + n m+nm + n .
Solution:
Without loss of generality, let z j = 8 ( cos β‘ j Ο 6 + i sin β‘ j Ο 6 ) z_{j}=8\left(\cos \frac{j \pi}{6}+i \sin \frac{j \pi}{6}\right)z j β = 8 ( cos 6 j Ο β + i sin 6 j Ο β ) , so that i z j = i z_{j}=i z j β = 8 ( β sin β‘ j Ο 6 + i cos β‘ j Ο 6 ) 8\left(-\sin \frac{j \pi}{6}+i \cos \frac{j \pi}{6}\right)8 ( β sin 6 j Ο β + i cos 6 j Ο β ) . Because β ( β j = 1 12 w j ) = β j = 1 12 β ( w j ) \Re\left(\sum_{j=1}^{12} w_{j}\right)=\sum_{j=1}^{12} \Re\left(w_{j}\right)β ( β j = 1 1 2 β w j β ) = β j = 1 1 2 β β ( w j β ) , the sum is maximized when β ( w j ) = max β‘ ( 8 cos β‘ j Ο 6 , β 8 sin β‘ j Ο 6 ) \Re\left(w_{j}\right)=\max \left(8 \cos \frac{j \pi}{6},-8 \sin \frac{j \pi}{6}\right)β ( w j β ) = max ( 8 cos 6 j Ο β , β 8 sin 6 j Ο β ) for each 1 β€ j β€ 12 1 \leq j \leq 121 β€ j β€ 1 2 . Because cos β‘ j Ο 6 < β sin β‘ j Ο 6 \cos \frac{j \pi}{6}<-\sin \frac{j \pi}{6}cos 6 j Ο β < β sin 6 j Ο β for 5 β€ j β€ 10 5 \leq j \leq 105 β€ j β€ 1 0 , the maximum possible sum is
8 ( cos β‘ 0 Ο 6 + cos β‘ 1 Ο 6 + cos β‘ 2 Ο 6 + cos β‘ 3 Ο 6 + cos β‘ 4 Ο 6 + cos β‘ 11 Ο 6 ) β 8 ( sin β‘ 5 Ο 6 + sin β‘ 6 Ο 6 + sin β‘ 7 Ο 6 + sin β‘ 8 Ο 6 + sin β‘ 9 Ο 6 + sin β‘ 10 Ο 6 ) = 8 ( 1 + 3 2 + 1 2 + 0 β 1 2 + 3 2 ) β 8 ( 1 2 + 0 β 1 2 β 3 2 β 1 β 3 2 ) = 16 + 16 3 = 16 + 768 , \begin{aligned}
&8\left(\cos \frac{0 \pi}{6}+\cos \frac{1 \pi}{6}+\cos \frac{2 \pi}{6}+\cos \frac{3 \pi}{6}+\cos \frac{4 \pi}{6}+\cos \frac{11 \pi}{6}\right)- \\
&8\left(\sin \frac{5 \pi}{6}+\sin \frac{6 \pi}{6}+\sin \frac{7 \pi}{6}+\sin \frac{8 \pi}{6}+\sin \frac{9 \pi}{6}+\sin \frac{10 \pi}{6}\right)= \\
&8\left(1+\frac{\sqrt{3}}{2}+\frac{1}{2}+0-\frac{1}{2}+\frac{\sqrt{3}}{2}\right)-8\left(\frac{1}{2}+0-\frac{1}{2}-\frac{\sqrt{3}}{2}-1-\frac{\sqrt{3}}{2}\right) \\
&= 16+16 \sqrt{3} \\
&= 16+\sqrt{768},
\end{aligned}
β 8 ( cos 6 0 Ο β + cos 6 1 Ο β + cos 6 2 Ο β + cos 6 3 Ο β + cos 6 4 Ο β + cos 6 1 1 Ο β ) β 8 ( sin 6 5 Ο β + sin 6 6 Ο β + sin 6 7 Ο β + sin 6 8 Ο β + sin 6 9 Ο β + sin 6 1 0 Ο β ) = 8 ( 1 + 2 3 β β + 2 1 β + 0 β 2 1 β + 2 3 β β ) β 8 ( 2 1 β + 0 β 2 1 β β 2 3 β β β 1 β 2 3 β β ) = 1 6 + 1 6 3 β = 1 6 + 7 6 8 β , β
and the requested sum is 16 + 768 = 784 16+768=\boxed{784}1 6 + 7 6 8 = 7 8 4 β .
The problems and solutions on this page are the property of the MAA's American Mathematics Competitions