Problem:
Let x and y be real numbers such that sinysinxβ=3 and cosycosxβ=21β. The value of sin2ysin2xβ+cos2ycos2xβ can be expressed in the form qpβ, where p and q are relatively prime positive integers. Find p+q.
Solution:
Let sinysinxβ=A, and let cosycosxβ=B. Note that
sin2ysin2xβ=2sinycosy2sinxcosxβ=sinysinxββ
cosycosxβ=AB
Furthermore, sinx=Asiny and cosx=Bcosy. Square each of the last two equations and add the resulting equations to obtain 1=sin2x+ cos2x=A2sin2y+B2cos2y=A2(sin2y+cos2y)+(B2βA2)cos2y. Therefore cos2y=B2βA21βA2β. Thus
cos2ycos2xββ=2cos2yβ12cos2xβ1β=2cos2yβ12B2cos2yβ1β=2(B2βA21βA2β)β12B2(B2βA21βA2β)β1β=2βA2βB2B2β2A2B2+A2β.β
Substituting A=3 and B=21β produces sin2ysin2xβ=AB=23β, and cos2ycos2xβ= β2919β. Thus sin2ysin2xβ+cos2ycos2xβ=5849β, and p+q=107β.
The problems on this page are the property of the MAA's American Mathematics Competitions