Problem:
Suppose that the angles of β³ A B C \triangle A B Cβ³ A B C satisfy cos β‘ ( 3 A ) + cos β‘ ( 3 B ) + cos β‘ ( 3 C ) = 1 \cos (3 A)+\cos (3 B)+\cos (3 C)=1cos ( 3 A ) + cos ( 3 B ) + cos ( 3 C ) = 1 . Two sides of the triangle have lengths 10 101 0 and 13 131 3 . There is a positive integer m mm so that the maximum possible length for the remaining side of β³ A B C \triangle A B Cβ³ A B C is m \sqrt{m}m β . Find m mm .
Solution:
The condition cos β‘ ( 3 A ) + cos β‘ ( 3 B ) + cos β‘ ( 3 C ) = 1 \cos (3 A)+\cos (3 B)+\cos (3 C)=1cos ( 3 A ) + cos ( 3 B ) + cos ( 3 C ) = 1 implies
0 = 1 β cos β‘ 3 A β ( cos β‘ 3 B + cos β‘ 3 C ) = 2 2 ( 3 2 A ) β 2 cos β‘ ( 3 2 ( B + C ) ) cos β‘ ( 3 2 ( B β C ) ) = 2 2 ( 3 2 A ) + 2 sin β‘ ( 3 2 A ) cos β‘ ( 3 2 ( B β C ) ) = 2 sin β‘ ( 3 2 A ) ( sin β‘ ( 3 2 A ) + cos β‘ ( 3 2 ( B β C ) ) ) = 2 sin β‘ ( 3 2 A ) ( β cos β‘ ( 3 2 ( B + C ) ) + cos β‘ ( 3 2 ( B β C ) ) ) = 4 sin β‘ ( 3 2 A ) sin β‘ ( 3 2 B ) sin β‘ ( 3 2 C ) . \begin{aligned}
0 &=1-\cos 3 A-(\cos 3 B+\cos 3 C) \\
&=2 \sin ^{2}\left(\frac{3}{2} A\right)-2 \cos \left(\frac{3}{2}(B+C)\right) \cos \left(\frac{3}{2}(B-C)\right) \\
&=2 \sin ^{2}\left(\frac{3}{2} A\right)+2 \sin \left(\frac{3}{2} A\right) \cos \left(\frac{3}{2}(B-C)\right) \\
&=2 \sin \left(\frac{3}{2} A\right)\left(\sin \left(\frac{3}{2} A\right)+\cos \left(\frac{3}{2}(B-C)\right)\right) \\
&=2 \sin \left(\frac{3}{2} A\right)\left(-\cos \left(\frac{3}{2}(B+C)\right)+\cos \left(\frac{3}{2}(B-C)\right)\right) \\
&=4 \sin \left(\frac{3}{2} A\right) \sin \left(\frac{3}{2} B\right) \sin \left(\frac{3}{2} C\right) .
\end{aligned}
0 β = 1 β cos 3 A β ( cos 3 B + cos 3 C ) = 2 sin 2 ( 2 3 β A ) β 2 cos ( 2 3 β ( B + C ) ) cos ( 2 3 β ( B β C ) ) = 2 sin 2 ( 2 3 β A ) + 2 sin ( 2 3 β A ) cos ( 2 3 β ( B β C ) ) = 2 sin ( 2 3 β A ) ( sin ( 2 3 β A ) + cos ( 2 3 β ( B β C ) ) ) = 2 sin ( 2 3 β A ) ( β cos ( 2 3 β ( B + C ) ) + cos ( 2 3 β ( B β C ) ) ) = 4 sin ( 2 3 β A ) sin ( 2 3 β B ) sin ( 2 3 β C ) . β
Therefore one of β A , β B \angle A, \angle Bβ A , β B , or β C \angle Cβ C must be 12 0 β 120^{\circ}1 2 0 β . The largest value of the remaining side of β³ A B C \triangle A B Cβ³ A B C is obtained when the 12 0 β 120^{\circ}1 2 0 β angle is between the sides of lengths 10 101 0 and 13 131 3 . In this case the Law of Cosines implies that the third side has length 1 0 2 + 1 3 2 + 10 β
13 = 399 \sqrt{10^{2}+13^{2}+10 \cdot 13}=\sqrt{\boxed{399}}1 0 2 + 1 3 2 + 1 0 β
1 3 β = 3 9 9 β β .
The problems on this page are the property of the MAA's American Mathematics Competitions