Problem:
For 1β€iβ€215 let aiβ=2i1β and a216β=22151β. Let x1β,x2β,β¦,x216β be positive real numbers such that
i=1β216βxiβ=1 and 1β€i<jβ€216ββxiβxjβ=215107β+i=1β216β2(1βaiβ)aiβxi2ββ
The maximum possible value of x2β=nmβ, where m and n are relatively prime positive integers. Find m+n.
Solution:
For 1β€iβ€216, let biβ=1βaiββ. Because βi=1216βaiβ=1, it follows that βi=1216βbi2β=215. Also, if {xiβ} is a sequence of positive real numbers with βi=1216βxiβ=1, then β1β€i<jβ€216β2xiβxjβ=(βi=1216βxiβ)2ββi=1216βxi2β=1ββi=1216βxi2β.
Observe that for each i,(biβxiββ)2β2152xiββ+(215biββ)2=(biβxiβββ215biββ)2β₯0, and thus summing over 1β€iβ€216 yields βi=1216β((biβxiββ)2β2152xiββ+(215biββ)2)β₯0. Because βi=1216βbi2β=215 and βi=1216βxiβ=1, it follows that βi=1216β(biβxiββ)2β2152β+21521ββ 215β₯0, which is equivalent to 2151ββ€βi=1216β(biβxiββ)2=βi=1216β1βaiβxi2ββ. Hence β1β€i<jβ€216β2xiβxjβ=1ββi=1216βxi2ββ€215214β+βi=1216β1βaiβxi2ββββi=1216βxi2β=215214β+βi=1216β1βaiβaiβxi2ββ, so β1β€i<jβ€216βxiβxjββ€215107β+βi=1216β2(1βaiβ)aiβxi2ββ.
Equality occurs in this inequality if and only if for each i,biβxiβββ215biββ=0 or xiβ=2151βaiββ. Therefore such a sequence {xiβ} is unique and x2β=8603β. The requested sum is 3+860=863β.