Problem:  
Let β³ A B C  \triangle A B Cβ³ A B C   have side lengths A B = 30 , B C = 32  A B=30, B C=32A B = 3 0 , B C = 3 2  , and A C = 34  A C=34A C = 3 4  . Point X  XX   lies in the interior of B C βΎ  \overline{B C}B C  , and points I 1  I_{1}I 1 β   and I 2  I_{2}I 2 β   are the incenters of β³ A B X  \triangle A B Xβ³ A B X   and β³ A C X  \triangle A C Xβ³ A C X  , respectively. Find the minimum possible area of β³ A I 1 I 2  \triangle A I_{1} I_{2}β³ A I 1 β I 2 β   as X  XX   varies along B C βΎ  \overline{B C}B C  .
Solution: 
First note that
β  I 1 A I 2 = β  I 1 A X + β  X A I 2 = β  B A X 2 + β  C A X 2 = β  A 2 .  \angle I_{1} A I_{2}=\angle I_{1} A X+\angle X A I_{2}=\frac{\angle B A X}{2}+\frac{\angle C A X}{2}=\frac{\angle A}{2} .
β  I 1 β A I 2 β = β  I 1 β A X + β  X A I 2 β = 2 β  B A X β + 2 β  C A X β = 2 β  A β . 
This is a constant not depending on X  XX  . Let a = B C , b = A C , c = A B  a=B C, b=A C, c=A Ba = B C , b = A C , c = A B  , and Ξ± = β  A X B  \alpha=\angle A X BΞ± = β  A X B  . Note that
β  A I 1 B = 18 0 β β ( β  I 1 A B + β  I 1 B A ) = 18 0 β β 1 2 ( 18 0 β β Ξ± ) = 9 0 β + Ξ± 2 .  \angle A I_{1} B=180^{\circ}-\left(\angle I_{1} A B+\angle I_{1} B A\right)=180^{\circ}-\frac{1}{2}\left(180^{\circ}-\alpha\right)=90^{\circ}+\frac{\alpha}{2} .
β  A I 1 β B = 1 8 0 β β ( β  I 1 β A B + β  I 1 β B A ) = 1 8 0 β β 2 1 β ( 1 8 0 β β Ξ± ) = 9 0 β + 2 Ξ± β . 
Applying the Law of Sines to β³ A B I 1  \triangle A B I_{1}β³ A B I 1 β   gives
A I 1 A B = sin β‘ ( β  A B I 1 ) sin β‘ ( β  A I 1 B ) ,  implying that  A I 1 = c sin β‘ B 2 cos β‘ Ξ± 2  \frac{A I_{1}}{A B}=\frac{\sin \left(\angle A B I_{1}\right)}{\sin \left(\angle A I_{1} B\right)}, \quad \text { implying that } \quad A I_{1}=\frac{c \sin \frac{B}{2}}{\cos \frac{\alpha}{2}}
A B A I 1 β β = sin ( β  A I 1 β B ) sin ( β  A B I 1 β ) β ,  implying that  A I 1 β = cos 2 Ξ± β c sin 2 B β β 
Analogously, β  A I 2 C = 9 0 β + β  A X C 2 = 18 0 β β Ξ± 2  \angle A I_{2} C=90^{\circ}+\frac{\angle A X C}{2}=180^{\circ}-\frac{\alpha}{2}β  A I 2 β C = 9 0 β + 2 β  A X C β = 1 8 0 β β 2 Ξ± β   and
A I 2 = b sin β‘ C 2 sin β‘ Ξ± 2  A I_{2}=\frac{b \sin \frac{C}{2}}{\sin \frac{\alpha}{2}}
A I 2 β = sin 2 Ξ± β b sin 2 C β β 
Because the area of β³ I 1 A I 2  \triangle I_{1} A I_{2}β³ I 1 β A I 2 β   can be written as 1 2 ( A I 1 ) ( A I 2 ) sin β‘ ( β  I 1 A I 2 )  \frac{1}{2}\left(A I_{1}\right)\left(A I_{2}\right) \sin \left(\angle I_{1} A I_{2}\right)2 1 β ( A I 1 β ) ( A I 2 β ) sin ( β  I 1 β A I 2 β )  , it follows that
[ β³ A I 1 I 2 ] = b c sin β‘ A 2 sin β‘ B 2 sin β‘ C 2 2 cos β‘ Ξ± 2 sin β‘ Ξ± 2 = b c sin β‘ A 2 sin β‘ B 2 sin β‘ C 2 sin β‘ Ξ± β₯ b c sin β‘ A 2 sin β‘ B 2 sin β‘ C 2  \begin{aligned}
{\left[\triangle A I_{1} I_{2}\right]=\frac{b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{2 \cos \frac{\alpha}{2} \sin \frac{\alpha}{2}} } &=\frac{b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{\sin \alpha} \\
&\geq b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
\end{aligned}
[ β³ A I 1 β I 2 β ] = 2 cos 2 Ξ± β sin 2 Ξ± β b c sin 2 A β sin 2 B β sin 2 C β β β = sin Ξ± b c sin 2 A β sin 2 B β sin 2 C β β β₯ b c sin 2 A β sin 2 B β sin 2 C β β 
with equality when Ξ± = 9 0 β  \alpha=90^{\circ}Ξ± = 9 0 β  , that is, when X  XX   is the foot of the perpendicular from A  AA   to B C βΎ  \overline{B C}B C  . In this case the desired area is b c sin β‘ A 2 sin β‘ B 2 sin β‘ C 2  b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}b c sin 2 A β sin 2 B β sin 2 C β  . To make this feasible to compute, note that
sin β‘ A 2 = 1 β cos β‘ A 2 = 1 β b 2 + c 2 β a 2 2 b c 2 = ( a β b + c ) ( a + b β c ) 4 b c .  \sin \frac{A}{2}=\sqrt{\frac{1-\cos A}{2}}=\sqrt{\frac{1-\frac{b^{2}+c^{2}-a^{2}}{2 b c}}{2}}=\sqrt{\frac{(a-b+c)(a+b-c)}{4 b c}} .
sin 2 A β = 2 1 β cos A β β = 2 1 β 2 b c b 2 + c 2 β a 2 β β β = 4 b c ( a β b + c ) ( a + b β c ) β β . 
Applying similar logic to sin β‘ B 2  \sin \frac{B}{2}sin 2 B β   and sin β‘ C 2  \sin \frac{C}{2}sin 2 C β   and simplifying yields a final answer of
b c sin β‘ A 2 sin β‘ B 2 sin β‘ C 2 = b c β
 ( a β b + c ) ( b β c + a ) ( c β a + b ) 8 a b c = ( 32 β 34 + 30 ) ( 34 β 30 + 32 ) ( 30 β 32 + 34 ) 8 β
 32 = 126 .  \begin{aligned}
b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} &=b c \cdot \frac{(a-b+c)(b-c+a)(c-a+b)}{8 a b c} \\
&=\frac{(32-34+30)(34-30+32)(30-32+34)}{8 \cdot 32}=\boxed{126}.
\end{aligned}
b c sin 2 A β sin 2 B β sin 2 C β β = b c β
 8 a b c ( a β b + c ) ( b β c + a ) ( c β a + b ) β = 8 β
 3 2 ( 3 2 β 3 4 + 3 0 ) ( 3 4 β 3 0 + 3 2 ) ( 3 0 β 3 2 + 3 4 ) β = 1 2 6 β . β 
 
The problems on this page are the property of the MAA's American Mathematics Competitions