Problem:
Consider the integer
N=9+99+999+9999+β―+321 digits 99β¦99ββ
Find the sum of the digits of N.
Solution:
Write
Nβ=(10β1)+(102β1)+β―+(10321β1)=10+102+103+104+105+106+β―+10321β321=1110β321+104+105+106+β―+10321=789+104+105+106+β―+10321β
The sum of the digits of N is therefore equal to 7+8+9+(321β3)=342.
The problems on this page are the property of the MAA's American Mathematics Competitions