Problem:
A bug walks all day and sleeps all night. On the first day, it starts at point O OO , faces east, and walks a distance of 5 units due east. Each night the bug rotates 6 0 β 60^{\circ}6 0 β counterclockwise. Each day it walks in this new direction half as far as it walked the previous day. The bug gets arbitrarily close to point P PP . Then O P 2 = m n O P^{2}=\frac{m}{n}O P 2 = n m β , where m mm and n nn are relatively prime positive integers. Find m + n m+nm + n .
Solution:
Suppose the bug begins at the origin ( 0 , 0 ) (0, 0)( 0 , 0 ) and travels a aa units due east on the first day. On each subsequent day, the bug travels a distance equal to r rr times the distance traveled the previous day, where 0 < r < 1 0 < r < 10 < r < 1 is a fixed real number.
On day n nn , the bug travels along a vector v n v_nv n β with magnitude a r n β 1 a r^{n-1}a r n β 1 and direction given by the unit vector β¨ cos β‘ ( n β
6 0 β ) , sin β‘ ( n β
6 0 β ) β© \langle \cos(n \cdot 60^\circ), \sin(n \cdot 60^\circ) \rangleβ¨ cos ( n β
6 0 β ) , sin ( n β
6 0 β ) β© . The point P PP represents the terminal point of the infinite sum of these vectors:
v 1 + v 2 + v 3 + β― v_1 + v_2 + v_3 + \cdots
v 1 β + v 2 β + v 3 β + β―
The point P PP represents the final position of the bug after infinitely many days of movement β that is, the endpoint of the infinite sum of its daily displacement vectors.
The x xx -coordinate of this total displacement is given by:
a ( cos β‘ 0 β + r cos β‘ 6 0 β + r 2 cos β‘ 12 0 β + r 3 cos β‘ 18 0 β + r 4 cos β‘ 24 0 β + r 5 cos β‘ 30 0 β + r 6 cos β‘ 36 0 β + β― β ) \begin{gathered}
a\left(\cos 0^{\circ} + r \cos 60^{\circ} + r^{2} \cos 120^{\circ} + r^{3} \cos 180^{\circ} + r^{4} \cos 240^{\circ} \right. \\
\left. + r^{5} \cos 300^{\circ} + r^{6} \cos 360^{\circ} + \cdots \right)
\end{gathered}
a ( cos 0 β + r cos 6 0 β + r 2 cos 1 2 0 β + r 3 cos 1 8 0 β + r 4 cos 2 4 0 β + r 5 cos 3 0 0 β + r 6 cos 3 6 0 β + β― ) β
Since the directional angles repeat every 6 terms, this series can be grouped and rewritten as:
a S ( 1 + r 6 + r 12 + r 18 + β― β ) = a S 1 β r 6 a S \left(1 + r^{6} + r^{12} + r^{18} + \cdots \right) = \frac{a S}{1 - r^{6}}
a S ( 1 + r 6 + r 1 2 + r 1 8 + β― ) = 1 β r 6 a S β
where
S = cos β‘ 0 β + r cos β‘ 6 0 β + r 2 cos β‘ 12 0 β + r 3 cos β‘ 18 0 β + r 4 cos β‘ 24 0 β + r 5 cos β‘ 30 0 β S = \cos 0^{\circ} + r \cos 60^{\circ} + r^{2} \cos 120^{\circ} + r^{3} \cos 180^{\circ} + r^{4} \cos 240^{\circ} + r^{5} \cos 300^{\circ}
S = cos 0 β + r cos 6 0 β + r 2 cos 1 2 0 β + r 3 cos 1 8 0 β + r 4 cos 2 4 0 β + r 5 cos 3 0 0 β
Similarly, the y yy -coordinate of P PP is:
a T 1 β r 6 \frac{a T}{1 - r^{6}}
1 β r 6 a T β
where
T = sin β‘ 0 β + r sin β‘ 6 0 β + r 2 sin β‘ 12 0 β + r 3 sin β‘ 18 0 β + r 4 sin β‘ 24 0 β + r 5 sin β‘ 30 0 β T = \sin 0^{\circ} + r \sin 60^{\circ} + r^{2} \sin 120^{\circ} + r^{3} \sin 180^{\circ} + r^{4} \sin 240^{\circ} + r^{5} \sin 300^{\circ}
T = sin 0 β + r sin 6 0 β + r 2 sin 1 2 0 β + r 3 sin 1 8 0 β + r 4 sin 2 4 0 β + r 5 sin 3 0 0 β
Now, substituting the given values r = 1 2 r = \frac{1}{2}r = 2 1 β and a = 5 a = 5a = 5 , we compute:
S = 1 + 1 4 β 1 8 β 1 8 β 1 32 + 1 64 = 63 64 T = 0 + 3 4 + 3 8 + 0 β 3 32 β 3 64 = 21 3 64 \begin{gathered}
S = 1 + \frac{1}{4} - \frac{1}{8} - \frac{1}{8} - \frac{1}{32} + \frac{1}{64} = \frac{63}{64} \\
T = 0 + \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{8} + 0 - \frac{\sqrt{3}}{32} - \frac{\sqrt{3}}{64} = \frac{21\sqrt{3}}{64}
\end{gathered}
S = 1 + 4 1 β β 8 1 β β 8 1 β β 3 2 1 β + 6 4 1 β = 6 4 6 3 β T = 0 + 4 3 β β + 8 3 β β + 0 β 3 2 3 β β β 6 4 3 β β = 6 4 2 1 3 β β β
Thus, the coordinates of point P PP are:
( 5 S 1 β 1 64 , 5 T 1 β 1 64 ) = ( 5 , 5 3 3 ) \left( \frac{5S}{1 - \frac{1}{64}}, \frac{5T}{1 - \frac{1}{64}} \right) = \left( 5, \frac{5\sqrt{3}}{3} \right)
( 1 β 6 4 1 β 5 S β , 1 β 6 4 1 β 5 T β ) = ( 5 , 3 5 3 β β )
The square of the distance from the origin to P PP is 25 + 25 3 = 100 3 25+\frac{25}{3}=\frac{100}{3}2 5 + 3 2 5 β = 3 1 0 0 β . The requested sum is 100 + 3 = 103 100+3=\boxed{103}1 0 0 + 3 = 1 0 3 β .
The problems on this page are the property of the MAA's American Mathematics Competitions