Problem:
Let β³ A B C \triangle A B Cβ³ A B C be an acute triangle with circumcenter O OO and centroid G GG . Let X XX be the intersection of the line tangent to the circumcircle of β³ A B C \triangle A B Cβ³ A B C at A AA and the line perpendicular to G O G OG O at G GG . Let Y YY be the intersection of lines X G X GX G and B C B CB C . Given that the measures of β A B C , β B C A \angle A B C, \angle B C Aβ A B C , β B C A , and β X O Y \angle X O Yβ X O Y are in the ratio 13 : 2 : 17 13: 2: 171 3 : 2 : 1 7 , the degree measure of β B A C \angle B A Cβ B A C can be written as m n \frac{m}{n}n m β , where m mm and n nn are relatively prime positive integers. Find m + n m+nm + n .
Solution:
Answer (592):
There is a real number x > 0 x>0x > 0 such that 13 x = β A B C > β B C A = 2 x 13 x=\angle A B C>\angle B C A=2 x1 3 x = β A B C > β B C A = 2 x . Let M MM be the midpoint of B C βΎ \overline{B C}B C , and let T TT be the intersection of lines X A X AX A and B C B CB C .
Because β O A X = β O M Y = β O G Y = 9 0 β \angle O A X=\angle O M Y=\angle O G Y=90^{\circ}β O A X = β O M Y = β O G Y = 9 0 β , both O G Y M O G Y MO G Y M and O G A X O G A XO G A X are cyclic. Then it follows that
18 0 β = β A G O + β O G M = ( 18 0 β β β A X O ) + β O Y M = ( 18 0 β β β T X O ) + ( 18 0 β β β T Y O ) , \begin{aligned}
180^{\circ} & =\angle A G O+\angle O G M \\
& =\left(180^{\circ}-\angle A X O\right)+\angle O Y M \\
& =\left(180^{\circ}-\angle T X O\right)+\left(180^{\circ}-\angle T Y O\right),
\end{aligned}
1 8 0 β β = β A G O + β O G M = ( 1 8 0 β β β A X O ) + β O Y M = ( 1 8 0 β β β T X O ) + ( 1 8 0 β β β T Y O ) , β
which implies β T X O + β T Y O = 18 0 β \angle T X O+\angle T Y O=180^{\circ}β T X O + β T Y O = 1 8 0 β , showing that O OO lies on the circumcircle of β³ X T Y \triangle X T Yβ³ X T Y . Consequently,
17 x = β X O Y = 18 0 β β β X T Y = 18 0 β β ( β A B C β β T A B ) = 18 0 β β ( β A B C β β B C A ) = 18 0 β β 11 x , \begin{aligned}
17 x=\angle X O Y & =180^{\circ}-\angle X T Y \\
& =180^{\circ}-(\angle A B C-\angle T A B) \\
& =180^{\circ}-(\angle A B C-\angle B C A)=180^{\circ}-11 x,
\end{aligned}
1 7 x = β X O Y β = 1 8 0 β β β X T Y = 1 8 0 β β ( β A B C β β T A B ) = 1 8 0 β β ( β A B C β β B C A ) = 1 8 0 β β 1 1 x , β
which implies x = 1 17 + 11 β
18 0 β = 1 28 β
18 0 β x=\frac{1}{17+11} \cdot 180^{\circ}=\frac{1}{28} \cdot 180^{\circ}x = 1 7 + 1 1 1 β β
1 8 0 β = 2 8 1 β β
1 8 0 β . Then
β B A C = 18 0 β β ( 2 x + 13 x ) = 18 0 β [ 1 β 15 28 ] = 13 28 β
18 0 β = 13 β
4 5 β 7 = 58 5 β 7 . \begin{aligned}
\angle B A C & =180^{\circ}-(2 x+13 x) \\
& =180^{\circ}\left[1-\frac{15}{28}\right] \\
& =\frac{13}{28} \cdot 180^{\circ}=\frac{13 \cdot 45^{\circ}}{7}=\frac{585^{\circ}}{7} .
\end{aligned}
β B A C β = 1 8 0 β β ( 2 x + 1 3 x ) = 1 8 0 β [ 1 β 2 8 1 5 β ] = 2 8 1 3 β β
1 8 0 β = 7 1 3 β
4 5 β β = 7 5 8 5 β β . β
The requested sum is 585 + 7 = 592 585+7=5925 8 5 + 7 = 5 9 2 .
Note: In fact, A G M βΎ \overline{A G M}A G M is the Simson line of O OO with respect to β³ X T Y \triangle X T Yβ³ X T Y and β B A C = β A B C \angle B A C=\angle A B Cβ B A C = β A B C .
The problems and solutions on this page are the property of the MAA's American Mathematics Competitions