Problem:
Let x , y x, yx , y , and z zz be positive real numbers satisfying the system of equations:
2 x β x y + 2 y β x y = 1 2 y β y z + 2 z β y z = 2 2 z β z x + 2 x β z x = 3 \begin{aligned}
& \sqrt{2 x-x y}+\sqrt{2 y-x y}=1 \\
& \sqrt{2 y-y z}+\sqrt{2 z-y z}=\sqrt{2} \\
& \sqrt{2 z-z x}+\sqrt{2 x-z x}=\sqrt{3}
\end{aligned}
β 2 x β x y β + 2 y β x y β = 1 2 y β y z β + 2 z β y z β = 2 β 2 z β z x β + 2 x β z x β = 3 β β
Then [ ( 1 β x ) ( 1 β y ) ( 1 β z ) ] 2 [(1-x)(1-y)(1-z)]^{2}[ ( 1 β x ) ( 1 β y ) ( 1 β z ) ] 2 can be written as m n \frac{m}{n}n m β , where m mm and n nn are relatively prime positive integers. Find m + n m+nm + n .
Solution:
Answer (033):
The square root of any real number is either real or pure imaginary, while the right side of each of the given equations is a nonzero real number. Thus in each of the equations both square roots evaluate to a real number and each of the six expressions under the radicals is nonnegative. This in turn implies that 0 β€ x , y , z β€ 2 0 \leq x, y, z \leq 20 β€ x , y , z β€ 2 . Hence there exist Ξ± , Ξ² \alpha, \betaΞ± , Ξ² , and Ξ³ \gammaΞ³ with 0 β€ Ξ± , Ξ² , Ξ³ β€ 9 0 β 0 \leq \alpha, \beta, \gamma \leq 90^{\circ}0 β€ Ξ± , Ξ² , Ξ³ β€ 9 0 β such that x = 2 2 Ξ± , y = 2 2 Ξ² x=2 \sin ^{2} \alpha, y=2 \sin ^{2} \betax = 2 sin 2 Ξ± , y = 2 sin 2 Ξ² , and z = 2 2 Ξ³ z=2 \sin ^{2} \gammaz = 2 sin 2 Ξ³ . Then
2 x β x y + 2 y β x y = 2 2 Ξ± 2 Ξ² + 2 2 Ξ± 2 Ξ² = 2 sin β‘ ( Ξ± + Ξ² ) \sqrt{2 x-x y}+\sqrt{2 y-x y}=2 \sqrt{\sin ^{2} \alpha \cos ^{2} \beta}+2 \sqrt{\cos ^{2} \alpha \sin ^{2} \beta}=2 \sin (\alpha+\beta)
2 x β x y β + 2 y β x y β = 2 sin 2 Ξ± cos 2 Ξ² β + 2 cos 2 Ξ± sin 2 Ξ² β = 2 sin ( Ξ± + Ξ² )
After a similar substitution into the second and third equations, the system becomes
sin β‘ ( Ξ± + Ξ² ) = 1 2 sin β‘ ( Ξ² + Ξ³ ) = 2 2 sin β‘ ( Ξ± + Ξ³ ) = 3 2 \begin{aligned}
& \sin (\alpha+\beta)=\frac{1}{2} \\
& \sin (\beta+\gamma)=\frac{\sqrt{2}}{2} \\
& \sin (\alpha+\gamma)=\frac{\sqrt{3}}{2}
\end{aligned}
β sin ( Ξ± + Ξ² ) = 2 1 β sin ( Ξ² + Ξ³ ) = 2 2 β β sin ( Ξ± + Ξ³ ) = 2 3 β β β
Hence Ξ± + Ξ² β { 3 0 β , 15 0 β } , Ξ² + Ξ³ β { 4 5 β , 13 5 β } \alpha+\beta \in\left\{30^{\circ}, 150^{\circ}\right\}, \beta+\gamma \in\left\{45^{\circ}, 135^{\circ}\right\}Ξ± + Ξ² β { 3 0 β , 1 5 0 β } , Ξ² + Ξ³ β { 4 5 β , 1 3 5 β } , and Ξ± + Ξ³ β { 6 0 β , 12 0 β } \alpha+\gamma \in\left\{60^{\circ}, 120^{\circ}\right\}Ξ± + Ξ³ β { 6 0 β , 1 2 0 β } .
Note that if Ξ± , Ξ² \alpha, \betaΞ± , Ξ² , and Ξ³ \gammaΞ³ satisfy these conditions, then so do 9 0 β β Ξ± , 9 0 β β Ξ² 90^{\circ}-\alpha, 90^{\circ}-\beta9 0 β β Ξ± , 9 0 β β Ξ² , and 9 0 β β Ξ³ 90^{\circ}-\gamma9 0 β β Ξ³ . Hence it is sufficient to consider the case when Ξ± + Ξ² = 3 0 β \alpha+\beta=30^{\circ}Ξ± + Ξ² = 3 0 β . Because Ξ³ β€ 9 0 β \gamma \leq 90^{\circ}Ξ³ β€ 9 0 β , it follows that in this case Ξ± + Ξ³ = 6 0 β \alpha+\gamma=60^{\circ}Ξ± + Ξ³ = 6 0 β and Ξ² + Ξ³ = 4 5 β \beta+\gamma=45^{\circ}Ξ² + Ξ³ = 4 5 β . Therefore the only two systems of equations that have solutions under the constraints 0 β€ Ξ± , Ξ² , Ξ³ β€ 9 0 β 0 \leq \alpha, \beta, \gamma \leq 90^{\circ}0 β€ Ξ± , Ξ² , Ξ³ β€ 9 0 β are
Ξ± + Ξ² = 3 0 β Ξ² + Ξ³ = 4 5 β Ξ± + Ξ³ = 6 0 β and Ξ± + Ξ² = 15 0 β Ξ² + Ξ³ = 13 5 β Ξ± + Ξ³ = 12 0 β \begin{array}{rlr}
\alpha+\beta & =30^{\circ} \\
\beta+\gamma & =45^{\circ} \\
\alpha+\gamma & =60^{\circ}
\end{array} \quad \text { and } \quad \begin{aligned}
\alpha+\beta & =150^{\circ} \\
\beta+\gamma & =135^{\circ} \\
\alpha+\gamma & =120^{\circ}
\end{aligned}
Ξ± + Ξ² Ξ² + Ξ³ Ξ± + Ξ³ β = 3 0 β = 4 5 β = 6 0 β β and Ξ± + Ξ² Ξ² + Ξ³ Ξ± + Ξ³ β = 1 5 0 β = 1 3 5 β = 1 2 0 β β
Note that
( 1 β x ) ( 1 β y ) ( 1 β z ) = ( 1 β 2 2 Ξ± ) ( 1 β 2 2 Ξ² ) ( 1 β 2 2 Ξ³ ) = cos β‘ ( 2 Ξ± ) cos β‘ ( 2 Ξ² ) cos β‘ ( 2 Ξ³ ) \begin{aligned}
(1-x)(1-y)(1-z) & =\left(1-2 \sin ^{2} \alpha\right)\left(1-2 \sin ^{2} \beta\right)\left(1-2 \sin ^{2} \gamma\right) \\
& =\cos (2 \alpha) \cos (2 \beta) \cos (2 \gamma)
\end{aligned}
( 1 β x ) ( 1 β y ) ( 1 β z ) β = ( 1 β 2 sin 2 Ξ± ) ( 1 β 2 sin 2 Ξ² ) ( 1 β 2 sin 2 Ξ³ ) = cos ( 2 Ξ± ) cos ( 2 Ξ² ) cos ( 2 Ξ³ ) β
In the first case, Ξ± = 22. 5 β , Ξ² = 7. 5 β , Ξ³ = 37. 5 β \alpha=22.5^{\circ}, \beta=7.5^{\circ}, \gamma=37.5^{\circ}Ξ± = 2 2 . 5 β , Ξ² = 7 . 5 β , Ξ³ = 3 7 . 5 β . Hence
( 1 β x ) ( 1 β y ) ( 1 β z ) = cos β‘ ( 4 5 β ) β
cos β‘ ( 1 5 β ) β
cos β‘ ( 7 5 β ) = cos β‘ ( 4 5 β ) β
cos β‘ ( 1 5 β ) β
sin β‘ ( 1 5 β ) = cos β‘ ( 4 5 β ) β
sin β‘ ( 3 0 β ) 2 = 2 8 \begin{aligned}
(1-x)(1-y)(1-z) & =\cos \left(45^{\circ}\right) \cdot \cos \left(15^{\circ}\right) \cdot \cos \left(75^{\circ}\right) \\
& =\cos \left(45^{\circ}\right) \cdot \cos \left(15^{\circ}\right) \cdot \sin \left(15^{\circ}\right) \\
& =\cos \left(45^{\circ}\right) \cdot \frac{\sin \left(30^{\circ}\right)}{2}=\frac{\sqrt{2}}{8}
\end{aligned}
( 1 β x ) ( 1 β y ) ( 1 β z ) β = cos ( 4 5 β ) β
cos ( 1 5 β ) β
cos ( 7 5 β ) = cos ( 4 5 β ) β
cos ( 1 5 β ) β
sin ( 1 5 β ) = cos ( 4 5 β ) β
2 sin ( 3 0 β ) β = 8 2 β β β
In the second case, Ξ± = 67. 5 β , Ξ² = 82. 5 β , Ξ³ = 52. 5 β \alpha=67.5^{\circ}, \beta=82.5^{\circ}, \gamma=52.5^{\circ}Ξ± = 6 7 . 5 β , Ξ² = 8 2 . 5 β , Ξ³ = 5 2 . 5 β .
( 1 β x ) ( 1 β y ) ( 1 β z ) = cos β‘ ( 13 5 β ) β
cos β‘ ( 16 5 β ) β
cos β‘ ( 10 5 β ) = β cos β‘ ( 4 5 β ) β
cos β‘ ( 1 5 β ) β
cos β‘ ( 7 5 β ) = β 2 8 \begin{aligned}
(1-x)(1-y)(1-z) & =\cos \left(135^{\circ}\right) \cdot \cos \left(165^{\circ}\right) \cdot \cos \left(105^{\circ}\right) \\
& =-\cos \left(45^{\circ}\right) \cdot \cos \left(15^{\circ}\right) \cdot \cos \left(75^{\circ}\right) \\
& =-\frac{\sqrt{2}}{8}
\end{aligned}
( 1 β x ) ( 1 β y ) ( 1 β z ) β = cos ( 1 3 5 β ) β
cos ( 1 6 5 β ) β
cos ( 1 0 5 β ) = β cos ( 4 5 β ) β
cos ( 1 5 β ) β
cos ( 7 5 β ) = β 8 2 β β β
Hence in both cases,
[ ( 1 β x ) ( 1 β y ) ( 1 β z ) ] 2 = 1 32 [(1-x)(1-y)(1-z)]^{2}=\frac{1}{32}
[ ( 1 β x ) ( 1 β y ) ( 1 β z ) ] 2 = 3 2 1 β
The requested sum is 1 + 32 = 33 1+32=331 + 3 2 = 3 3 .
OR
As above, deduce that 0 < x , y , z β€ 2 0<x, y, z \leq 20 < x , y , z β€ 2 . Let a = 1 β x , b = 1 β y , c = 1 β z a=1-x, b=1-y, c=1-za = 1 β x , b = 1 β y , c = 1 β z , with β 1 β€ a , b , c β€ 1 -1 \leq a, b, c \leq 1β 1 β€ a , b , c β€ 1 . Then the requested expression is equal to ( a b c ) 2 (a b c)^{2}( a b c ) 2 , and the system becomes
( 1 β a ) ( 1 + b ) + ( 1 + a ) ( 1 β b ) = 1 ( 1 β b ) ( 1 + c ) + ( 1 + b ) ( 1 β c ) = 2 ( 1 β a ) ( 1 + c ) + ( 1 + a ) ( 1 β c ) = 3 \begin{aligned}
& \sqrt{(1-a)(1+b)}+\sqrt{(1+a)(1-b)}=1 \\
& \sqrt{(1-b)(1+c)}+\sqrt{(1+b)(1-c)}=\sqrt{2} \\
& \sqrt{(1-a)(1+c)}+\sqrt{(1+a)(1-c)}=\sqrt{3}
\end{aligned}
β ( 1 β a ) ( 1 + b ) β + ( 1 + a ) ( 1 β b ) β = 1 ( 1 β b ) ( 1 + c ) β + ( 1 + b ) ( 1 β c ) β = 2 β ( 1 β a ) ( 1 + c ) β + ( 1 + a ) ( 1 β c ) β = 3 β β
Squaring the equations and simplifying gives
2 ( 1 β a 2 ) ( 1 β b 2 ) = 2 a b β 1 ( 1 β b 2 ) ( 1 β c 2 ) = b c 2 ( 1 β a 2 ) ( 1 β c 2 ) = 2 a c + 1 \begin{aligned}
2 \sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)} & =2 a b-1 \\
\sqrt{\left(1-b^{2}\right)\left(1-c^{2}\right)} & =b c \\
2 \sqrt{\left(1-a^{2}\right)\left(1-c^{2}\right)} & =2 a c+1
\end{aligned}
2 ( 1 β a 2 ) ( 1 β b 2 ) β ( 1 β b 2 ) ( 1 β c 2 ) β 2 ( 1 β a 2 ) ( 1 β c 2 ) β β = 2 a b β 1 = b c = 2 a c + 1 β
Note that it is necessary that 2 a b β 1 , b c 2 a b-1, b c2 a b β 1 , b c , and 2 a c + 1 2 a c+12 a c + 1 are nonnegative. Squaring and simplifying again gives
4 a 2 + 4 b 2 β 4 a b = 3 b 2 + c 2 = 1 4 a 2 + 4 c 2 + 4 a c = 3 \begin{array}{r}
4 a^{2}+4 b^{2}-4 a b=3 \\
b^{2}+c^{2}=1 \\
4 a^{2}+4 c^{2}+4 a c=3
\end{array}
4 a 2 + 4 b 2 β 4 a b = 3 b 2 + c 2 = 1 4 a 2 + 4 c 2 + 4 a c = 3 β
Subtracting the third equation from the first yields
b 2 β c 2 β a b β a c = ( b + c ) ( b β a β c ) = 0 b^{2}-c^{2}-a b-a c=(b+c)(b-a-c)=0
b 2 β c 2 β a b β a c = ( b + c ) ( b β a β c ) = 0
The case b = β c b=-cb = β c is incompatible with the condition ( 1 β b 2 ) ( 1 β c 2 ) = b c \sqrt{\left(1-b^{2}\right)\left(1-c^{2}\right)}=b c( 1 β b 2 ) ( 1 β c 2 ) β = b c . Hence the system of equations simplifies to
a + c = b b 2 + c 2 = 1 a 2 + c 2 + a c = 3 4 \begin{aligned}
a+c & =b \\
b^{2}+c^{2} & =1 \\
a^{2}+c^{2}+a c & =\frac{3}{4}
\end{aligned}
a + c b 2 + c 2 a 2 + c 2 + a c β = b = 1 = 4 3 β β
Substituting the first equation into the second gives
a 2 + 2 c 2 + 2 a c = 1 a^{2}+2 c^{2}+2 a c=1
a 2 + 2 c 2 + 2 a c = 1
which, combined with the third equation yields a 2 = 1 2 a^{2}=\frac{1}{2}a 2 = 2 1 β .
The condition b = a + c b=a+cb = a + c implies that
( b β c ) 2 = b 2 + c 2 β 2 b c = a 2 = 1 2 (b-c)^{2}=b^{2}+c^{2}-2 b c=a^{2}=\frac{1}{2}
( b β c ) 2 = b 2 + c 2 β 2 b c = a 2 = 2 1 β
from which b c = 1 4 b c=\frac{1}{4}b c = 4 1 β . Hence ( a b c ) 2 = ( b c ) 2 β
a 2 = 1 32 (a b c)^{2}=(b c)^{2} \cdot a^{2}=\frac{1}{32}( a b c ) 2 = ( b c ) 2 β
a 2 = 3 2 1 β , as above. The conditions are satisfied by
( a , b , c ) = ( 2 2 , 2 2 + 1 2 , 1 2 2 2 + 1 ) . (a, b, c)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2 \sqrt{2}+1}}{2}, \frac{1}{2 \sqrt{2 \sqrt{2}+1}}\right) .
( a , b , c ) = ( 2 2 β β , 2 2 2 β + 1 β β , 2 2 2 β + 1 β 1 β ) .
The problems and solutions on this page are the property of the MAA's American Mathematics Competitions