Problem:  
Two externally tangent circles Ο 1  \omega_{1}Ο 1 β   and Ο 2  \omega_{2}Ο 2 β   have centers O 1  O_{1}O 1 β   and O 2  O_{2}O 2 β  , respectively. A third circle Ξ©  \OmegaΞ©   passing through O 1  O_{1}O 1 β   and O 2  O_{2}O 2 β   intersects Ο 1  \omega_{1}Ο 1 β   at B  BB   and C  CC   and Ο 2  \omega_{2}Ο 2 β   at A  AA   and D  DD  , as shown. Suppose that A B = 2 , O 1 O 2 = 15  A B=2, O_{1} O_{2}=15A B = 2 , O 1 β O 2 β = 1 5  , C D = 16  C D=16C D = 1 6  , and A B O 1 C D O 2  A B O_{1} C D O_{2}A B O 1 β C D O 2 β   is a convex hexagon. Find the area of this hexagon.
Solution: 
First observe that A O 2 = O 2 D  A O_{2}=O_{2} DA O 2 β = O 2 β D   and B O 1 = O 1 C  B O_{1}=O_{1} CB O 1 β = O 1 β C  . Let points A β²  A^{\prime}A β²   and B β²  B^{\prime}B β²   be the reflections of A  AA   and B  BB  , respectively, across the diameter of Ξ©  \OmegaΞ©   that is the perpendicular bisector of O 1 O 2 βΎ  \overline{O_{1} O_{2}}O 1 β O 2 β β  . Thus A β²  A^{\prime}A β²   and B β²  B^{\prime}B β²   are on Ξ©  \OmegaΞ©   with A β² B β² = A B = 2  A^{\prime} B^{\prime}=A B=2A β² B β² = A B = 2  . Then quadrilaterals A B O 1 O 2  A B O_{1} O_{2}A B O 1 β O 2 β   and A β² B β² O 2 O 1  A^{\prime} B^{\prime} O_{2} O_{1}A β² B β² O 2 β O 1 β   are congruent, so hexagons A B O 1 C D O 2  A B O_{1} C D O_{2}A B O 1 β C D O 2 β   and B β² A β² O 1 C D O 2  B^{\prime} A^{\prime} O_{1} C D O_{2}B β² A β² O 1 β C D O 2 β   have the same area. Furthermore, because A β² O 1 ^ = D O 2 ^  \widehat{A^{\prime} O_{1}}=\widehat{D O_{2}}A β² O 1 β β = D O 2 β β   and O 1 C ^ = O 2 B β² ^  \widehat{O_{1} C}=\widehat{O_{2} B^{\prime}}O 1 β C β = O 2 β B β² β  , it follows that B β² D = A β² C  B^{\prime} D=A^{\prime} CB β² D = A β² C   and quadrilateral B β² A β² C D  B^{\prime} A^{\prime} C DB β² A β² C D   is an isosceles trapezoid.
 
Because A β² O 1 = D O 2  A^{\prime} O_{1}=D O_{2}A β² O 1 β = D O 2 β  , quadrilateral A β² O 1 D O 2  A^{\prime} O_{1} D O_{2}A β² O 1 β D O 2 β   is an isosceles trapezoid. In turn, A β² D = O 1 O 2 = 15  A^{\prime} D=O_{1} O_{2}=15A β² D = O 1 β O 2 β = 1 5  , and similarly B β² C = 15  B^{\prime} C=15B β² C = 1 5  . Thus Ptolemy's Theorem applied to B β² A β² C D  B^{\prime} A^{\prime} C DB β² A β² C D   yields B β² D β
 A β² C + 2 β
 16 = 1 5 2  B^{\prime} D \cdot A^{\prime} C+2 \cdot 16=15^{2}B β² D β
 A β² C + 2 β
 1 6 = 1 5 2  , whence B β² D = A β² C = 193  B^{\prime} D=A^{\prime} C=\sqrt{193}B β² D = A β² C = 1 9 3 β  . Let Ξ± = β  B β² A β² D  \alpha=\angle B^{\prime} A^{\prime} DΞ± = β  B β² A β² D  . The Law of Cosines applied to β³ B β² A β² D  \triangle B^{\prime} A^{\prime} Dβ³ B β² A β² D   yields
cos β‘ Ξ± = 1 5 2 + 2 2 β ( 193 ) 2 2 β
 2 β
 15 = 3 5  \begin{aligned}
\cos \alpha &= \dfrac{15^{2}+2^{2}-(\sqrt{193})^{2}}{2 \cdot 2 \cdot 15} \\
&= \dfrac{3}{5}
\end{aligned}
cos Ξ± β = 2 β
 2 β
 1 5 1 5 2 + 2 2 β ( 1 9 3 β ) 2 β = 5 3 β β 
and hence sin β‘ Ξ± = 4 5  \sin \alpha=\dfrac{4}{5}sin Ξ± = 5 4 β  . Let R  RR   be the point on line A β² B β²  A^{\prime} B^{\prime}A β² B β²   such that A β² R βΎ β₯ D R βΎ  \overline{A^{\prime} R} \perp \overline{D R}A β² R β₯ D R  . Because β³ A β² R D  \triangle A^{\prime} R Dβ³ A β² R D   is a right triangle whose hypotenuse has length 15  151 5   with cos β‘ ( β  D A β² R ) = 3 5  \cos \left(\angle D A^{\prime} R\right)=\dfrac{3}{5}cos ( β  D A β² R ) = 5 3 β  , it follows that A β² R = 9  A^{\prime} R=9A β² R = 9   and D R = 12  D R=12D R = 1 2  . In particular, the distance from A β² B β² βΎ  \overline{A^{\prime} B^{\prime}}A β² B β²   to C D βΎ  \overline{C D}C D   is D R = 12  D R=12D R = 1 2  , which implies that the area of B β² A β² C D  B^{\prime} A^{\prime} C DB β² A β² C D   is 1 2 β
 12 β
 ( 2 + 16 ) = 108  \dfrac{1}{2} \cdot 12 \cdot(2+16)=1082 1 β β
 1 2 β
 ( 2 + 1 6 ) = 1 0 8  .
Now let O 1 C = O 2 B β² = r 1  O_{1} C=O_{2} B^{\prime}=r_{1}O 1 β C = O 2 β B β² = r 1 β   and O 2 D = O 1 A β² = r 2  O_{2} D=O_{1} A^{\prime}=r_{2}O 2 β D = O 1 β A β² = r 2 β  . The tangency of circles Ο 1  \omega_{1}Ο 1 β   and Ο 2  \omega_{2}Ο 2 β   implies r 1 + r 2 = 15  r_{1}+r_{2}=15r 1 β + r 2 β = 1 5  . Furthermore, β  B β² O 2 D  \angle B^{\prime} O_{2} Dβ  B β² O 2 β D   and β  B β² A β² D  \angle B^{\prime} A^{\prime} Dβ  B β² A β² D   are opposite angles in cyclic quadrilateral A β² B β² O 2 D  A^{\prime} B^{\prime} O_{2} DA β² B β² O 2 β D  , which implies that the measure of β  B β² O 2 D  \angle B^{\prime} O_{2} Dβ  B β² O 2 β D   is 18 0 β β Ξ±  180^{\circ}-\alpha1 8 0 β β Ξ±  . Therefore the Law of Cosines applied to β³ B β² O 2 D  \triangle B^{\prime} O_{2} Dβ³ B β² O 2 β D   yields
193 = r 1 2 + r 2 2 β 2 r 1 r 2 ( β 3 5 ) = ( r 1 2 + 2 r 1 r 2 + r 2 2 ) β 4 5 r 1 r 2 = ( r 1 + r 2 ) 2 β 4 5 r 1 r 2 = 225 β 4 5 r 1 r 2 .  \begin{aligned}
193 & =r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2}\left(-\dfrac{3}{5}\right) \\
& =\left(r_{1}^{2}+2 r_{1} r_{2}+r_{2}^{2}\right)-\dfrac{4}{5} r_{1} r_{2} \\
& =\left(r_{1}+r_{2}\right)^{2}-\dfrac{4}{5} r_{1} r_{2} \\
& =225-\dfrac{4}{5} r_{1} r_{2}.
\end{aligned}
1 9 3 β = r 1 2 β + r 2 2 β β 2 r 1 β r 2 β ( β 5 3 β ) = ( r 1 2 β + 2 r 1 β r 2 β + r 2 2 β ) β 5 4 β r 1 β r 2 β = ( r 1 β + r 2 β ) 2 β 5 4 β r 1 β r 2 β = 2 2 5 β 5 4 β r 1 β r 2 β . β 
Thus r 1 r 2 = 40  r_{1} r_{2}=40r 1 β r 2 β = 4 0  , so the area of β³ B β² O 2 D  \triangle B^{\prime} O_{2} Dβ³ B β² O 2 β D   is 1 2 r 1 r 2 sin β‘ Ξ± = 16  \dfrac{1}{2} r_{1} r_{2} \sin \alpha=162 1 β r 1 β r 2 β sin Ξ± = 1 6  . The area of the hexagon is 108 + 2 β
 16 = 140  108+2 \cdot 16=\boxed{140}1 0 8 + 2 β
 1 6 = 1 4 0 β  .
 
The problems on this page are the property of the MAA's American Mathematics Competitions