Problem:
Two externally tangent circles Ο 1 \omega_{1}Ο 1 β and Ο 2 \omega_{2}Ο 2 β have centers O 1 O_{1}O 1 β and O 2 O_{2}O 2 β , respectively. A third circle Ξ© \OmegaΞ© passing through O 1 O_{1}O 1 β and O 2 O_{2}O 2 β intersects Ο 1 \omega_{1}Ο 1 β at B BB and C CC and Ο 2 \omega_{2}Ο 2 β at A AA and D DD , as shown. Suppose that A B = 2 , O 1 O 2 = 15 A B=2, O_{1} O_{2}=15A B = 2 , O 1 β O 2 β = 1 5 , C D = 16 C D=16C D = 1 6 , and A B O 1 C D O 2 A B O_{1} C D O_{2}A B O 1 β C D O 2 β is a convex hexagon. Find the area of this hexagon.
Solution:
First observe that A O 2 = O 2 D A O_{2}=O_{2} DA O 2 β = O 2 β D and B O 1 = O 1 C B O_{1}=O_{1} CB O 1 β = O 1 β C . Let points A β² A^{\prime}A β² and B β² B^{\prime}B β² be the reflections of A AA and B BB , respectively, across the diameter of Ξ© \OmegaΞ© that is the perpendicular bisector of O 1 O 2 βΎ \overline{O_{1} O_{2}}O 1 β O 2 β β . Thus A β² A^{\prime}A β² and B β² B^{\prime}B β² are on Ξ© \OmegaΞ© with A β² B β² = A B = 2 A^{\prime} B^{\prime}=A B=2A β² B β² = A B = 2 . Then quadrilaterals A B O 1 O 2 A B O_{1} O_{2}A B O 1 β O 2 β and A β² B β² O 2 O 1 A^{\prime} B^{\prime} O_{2} O_{1}A β² B β² O 2 β O 1 β are congruent, so hexagons A B O 1 C D O 2 A B O_{1} C D O_{2}A B O 1 β C D O 2 β and B β² A β² O 1 C D O 2 B^{\prime} A^{\prime} O_{1} C D O_{2}B β² A β² O 1 β C D O 2 β have the same area. Furthermore, because A β² O 1 ^ = D O 2 ^ \widehat{A^{\prime} O_{1}}=\widehat{D O_{2}}A β² O 1 β β = D O 2 β β and O 1 C ^ = O 2 B β² ^ \widehat{O_{1} C}=\widehat{O_{2} B^{\prime}}O 1 β C β = O 2 β B β² β , it follows that B β² D = A β² C B^{\prime} D=A^{\prime} CB β² D = A β² C and quadrilateral B β² A β² C D B^{\prime} A^{\prime} C DB β² A β² C D is an isosceles trapezoid.
Because A β² O 1 = D O 2 A^{\prime} O_{1}=D O_{2}A β² O 1 β = D O 2 β , quadrilateral A β² O 1 D O 2 A^{\prime} O_{1} D O_{2}A β² O 1 β D O 2 β is an isosceles trapezoid. In turn, A β² D = O 1 O 2 = 15 A^{\prime} D=O_{1} O_{2}=15A β² D = O 1 β O 2 β = 1 5 , and similarly B β² C = 15 B^{\prime} C=15B β² C = 1 5 . Thus Ptolemy's Theorem applied to B β² A β² C D B^{\prime} A^{\prime} C DB β² A β² C D yields B β² D β
A β² C + 2 β
16 = 1 5 2 B^{\prime} D \cdot A^{\prime} C+2 \cdot 16=15^{2}B β² D β
A β² C + 2 β
1 6 = 1 5 2 , whence B β² D = A β² C = B^{\prime} D=A^{\prime} C=B β² D = A β² C = 193 \sqrt{193}1 9 3 β . Let Ξ± = β B β² A β² D \alpha=\angle B^{\prime} A^{\prime} DΞ± = β B β² A β² D . The Law of Cosines applied to β³ B β² A β² D \triangle B^{\prime} A^{\prime} Dβ³ B β² A β² D yields
cos β‘ Ξ± = 1 5 2 + 2 2 β ( 193 ) 2 2 β
2 β
15 = 3 5 \cos \alpha=\frac{15^{2}+2^{2}-(\sqrt{193})^{2}}{2 \cdot 2 \cdot 15}=\frac{3}{5}
cos Ξ± = 2 β
2 β
1 5 1 5 2 + 2 2 β ( 1 9 3 β ) 2 β = 5 3 β
and hence sin β‘ Ξ± = 4 5 \sin \alpha=\frac{4}{5}sin Ξ± = 5 4 β . Let R RR be the point on line A β² B β² A^{\prime} B^{\prime}A β² B β² such that A β² R βΎ β₯ D R βΎ \overline{A^{\prime} R} \perp \overline{D R}A β² R β₯ D R . Because β³ A β² R D \triangle A^{\prime} R Dβ³ A β² R D is a right triangle whose hypotenuse has length 15 with cos β‘ ( β D A β² R ) = 3 5 \cos \left(\angle D A^{\prime} R\right)=\frac{3}{5}cos ( β D A β² R ) = 5 3 β , it follows that A β² R = 9 A^{\prime} R=9A β² R = 9 and D R = 12 D R=12D R = 1 2 . In particular, the distance from A β² B β² βΎ \overline{A^{\prime} B^{\prime}}A β² B β² to C D βΎ \overline{C D}C D is D R = 12 D R=12D R = 1 2 , which implies that the area of B β² A β² C D B^{\prime} A^{\prime} C DB β² A β² C D is 1 2 β
12 β
( 2 + 16 ) = 108 \frac{1}{2} \cdot 12 \cdot(2+16)=1082 1 β β
1 2 β
( 2 + 1 6 ) = 1 0 8 .
Now let O 1 C = O 2 B β² = r 1 O_{1} C=O_{2} B^{\prime}=r_{1}O 1 β C = O 2 β B β² = r 1 β and O 2 D = O 1 A β² = r 2 O_{2} D=O_{1} A^{\prime}=r_{2}O 2 β D = O 1 β A β² = r 2 β . The tangency of circles Ο 1 \omega_{1}Ο 1 β and Ο 2 \omega_{2}Ο 2 β implies r 1 + r 2 = 15 r_{1}+r_{2}=15r 1 β + r 2 β = 1 5 . Furthermore, β B β² O 2 D \angle B^{\prime} O_{2} Dβ B β² O 2 β D and β B β² A β² D \angle B^{\prime} A^{\prime} Dβ B β² A β² D are opposite angles in cyclic quadrilateral A β² B β² O 2 D A^{\prime} B^{\prime} O_{2} DA β² B β² O 2 β D , which implies that the measure of β B β² O 2 D \angle B^{\prime} O_{2} Dβ B β² O 2 β D is 18 0 β β Ξ± 180^{\circ}-\alpha1 8 0 β β Ξ± . Therefore the Law of Cosines applied to β³ B β² O 2 D \triangle B^{\prime} O_{2} Dβ³ B β² O 2 β D yields
193 = r 1 2 + r 2 2 β 2 r 1 r 2 ( β 3 5 ) = ( r 1 2 + 2 r 1 r 2 + r 2 2 ) β 4 5 r 1 r 2 = ( r 1 + r 2 ) 2 β 4 5 r 1 r 2 = 225 β 4 5 r 1 r 2 . \begin{aligned}
193 & =r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2}\left(-\frac{3}{5}\right) \\
& =\left(r_{1}^{2}+2 r_{1} r_{2}+r_{2}^{2}\right)-\frac{4}{5} r_{1} r_{2} \\
& =\left(r_{1}+r_{2}\right)^{2}-\frac{4}{5} r_{1} r_{2} \\
& =225-\frac{4}{5} r_{1} r_{2} .
\end{aligned}
1 9 3 β = r 1 2 β + r 2 2 β β 2 r 1 β r 2 β ( β 5 3 β ) = ( r 1 2 β + 2 r 1 β r 2 β + r 2 2 β ) β 5 4 β r 1 β r 2 β = ( r 1 β + r 2 β ) 2 β 5 4 β r 1 β r 2 β = 2 2 5 β 5 4 β r 1 β r 2 β . β
Thus r 1 r 2 = 40 r_{1} r_{2}=40r 1 β r 2 β = 4 0 , so the area of β³ B β² O 2 D \triangle B^{\prime} O_{2} Dβ³ B β² O 2 β D is 1 2 r 1 r 2 sin β‘ Ξ± = 16 \frac{1}{2} r_{1} r_{2} \sin \alpha=162 1 β r 1 β r 2 β sin Ξ± = 1 6 . The area of the hexagon is 108 + 2 β
16 = 140 108+2 \cdot 16= \boxed{140}1 0 8 + 2 β
1 6 = 1 4 0 β .
The problems on this page are the property of the MAA's American Mathematics Competitions