Problem:
There exists a unique positive integer a for which the sum
U=n=1β2023ββ5n2βnaββ
is an integer strictly between β1000 and 1000. For that unique a, find a+U. (Note that βxβ denotes the greatest integer that is less than or equal to x.)
Solution:
Answer (944):
First, compute
V=n=1β2023β5n2βanβ=302023β
2024β
4047ββaβ
102023β
2024β=102023β
2024ββ
(1349βa)
For a positive integer k, let r(k) be the remainder when k is divided by 5 . Because 0β€r(k)β€4 for all positive integers k, it follows that
Vβ54ββ
2023β€U=Vβn=1β2023β5r(n2βan)ββ€V
If β1000<U<1000, then β1000<V<1000+54ββ
2023 and thus
1349β2023β
202410000ββ20248β<a<1349+2023β
202410000β
Therefore a=1349 and V=0. Note that
r(n2β1349n)=β©βͺβͺβ¨βͺβͺβ§β012β if nβ‘0 or 4(mod5) if nβ‘2(mod5) if nβ‘1 or 3(mod5)β
Hence
U=βn=1β2023β5r(n2β1349n)β=β405β
(52β+51β+52β)=β405.
The requested sum is 1349+(β405)=944.
The problems and solutions on this page are the property of the MAA's American Mathematics Competitions