Problem:
Let P PP be a point on the circle circumscribing square A B C D A B C DA B C D that satisfies P A β
P C = 56 P A \cdot P C=56P A β
P C = 5 6 and P B β
P D = 90 P B \cdot P D=90P B β
P D = 9 0 . Find the area of A B C D A B C DA B C D .
Solution:
Answer (106):
Let Q QQ and R RR be the projections of P PP onto A C βΎ \overline{A C}A C and B D βΎ \overline{B D}B D , respectively, and let O OO be the center of square A B C D A B C DA B C D . Also, let r rr denote the radius of the circle circumscribing A B C D A B C DA B C D , so that A C = B D = 2 r A C=B D=2 rA C = B D = 2 r .
Observe that
56 = P A β
P C = 2 β
Area β‘ ( β³ P A C ) = P Q β
A C = P Q β
2 r and 90 = P B β
P D = 2 β
Area β‘ ( β³ P B D ) = P R β
B D = P R β
2 r . \begin{aligned}
& 56=P A \cdot P C=2 \cdot \operatorname{Area}(\triangle P A C)=P Q \cdot A C=P Q \cdot 2 r \quad \text { and } \\
& 90=P B \cdot P D=2 \cdot \operatorname{Area}(\triangle P B D)=P R \cdot B D=P R \cdot 2 r .
\end{aligned}
β 5 6 = P A β
P C = 2 β
A r e a ( β³ P A C ) = P Q β
A C = P Q β
2 r and 9 0 = P B β
P D = 2 β
A r e a ( β³ P B D ) = P R β
B D = P R β
2 r . β
Furthermore, because O R P Q O R P QO R P Q is a rectangle, r = O P = Q R = P Q 2 + P R 2 r=O P=Q R=\sqrt{P Q^{2}+P R^{2}}r = O P = Q R = P Q 2 + P R 2 β . Squaring both of the above equations and adding yields
5 6 2 + 9 0 2 = 4 r 2 ( P Q 2 + P R 2 ) = 4 r 4 56^{2}+90^{2}=4 r^{2}\left(P Q^{2}+P R^{2}\right)=4 r^{4}
5 6 2 + 9 0 2 = 4 r 2 ( P Q 2 + P R 2 ) = 4 r 4
Therefore
Area β‘ ( A B C D ) = 2 r 2 = 5 6 2 + 9 0 2 = 106 \operatorname{Area}(A B C D)=2 r^{2}=\sqrt{56^{2}+90^{2}}=106
A r e a ( A B C D ) = 2 r 2 = 5 6 2 + 9 0 2 β = 1 0 6
The problems and solutions on this page are the property of the MAA's American Mathematics Competitions