Problem:
Let Ο β 1 \omega \ne 1Ο ξ = 1 be a 13 131 3 th root of unity. Find the remainder when
β k = 0 12 ( 2 β 2 Ο k + Ο 2 k ) \prod_{k=0}^{12} (2 - 2\omega^k + \omega^{2k})
k = 0 β 1 2 β ( 2 β 2 Ο k + Ο 2 k )
is divided by 1000 10001 0 0 0 .
Solution:
Suppose the roots of p ( x ) = x 2 β 2 x + 2 p(x) = x^2 - 2x + 2p ( x ) = x 2 β 2 x + 2 are r 1 r_1r 1 β and r 2 r_2r 2 β . Then the product is
β k = 0 12 p ( Ο k ) = β k = 0 12 ( Ο k β r 1 ) β k = 0 12 ( Ο k β r 2 ) = ( r 1 13 β 1 ) ( r 2 13 β 1 ) . \prod_{k=0}^{12} p(\omega^k) = \prod_{k=0}^{12} (\omega^k - r_1) \prod_{k=0}^{12} (\omega^k - r_2) = (r_1^{13} - 1)(r_2^{13} - 1).
k = 0 β 1 2 β p ( Ο k ) = k = 0 β 1 2 β ( Ο k β r 1 β ) k = 0 β 1 2 β ( Ο k β r 2 β ) = ( r 1 1 3 β β 1 ) ( r 2 1 3 β β 1 ) .
By Vieta's Theorem, r 1 + r 2 = 2 r_1 + r_2 = 2r 1 β + r 2 β = 2 and r 1 r 2 = 2 r_1r_2 = 2r 1 β r 2 β = 2 . Let r rr be one of r 1 r_1r 1 β and r 2 r_2r 2 β . Because r 2 β 2 r + 2 = 0 r^2 - 2r + 2 = 0r 2 β 2 r + 2 = 0 , it follows that r 4 + 4 = ( r 2 β 2 r + 2 ) ( r 2 + 2 r + 2 ) = 0 r^4 + 4 = (r^2 - 2r + 2)(r^2 + 2r + 2) = 0r 4 + 4 = ( r 2 β 2 r + 2 ) ( r 2 + 2 r + 2 ) = 0 , so r 4 = β 4 , r 12 = β 64 , r^4 = -4, r^{12} = -64,r 4 = β 4 , r 1 2 = β 6 4 , and r 13 = β 1 β 64 r r^{13} = -1 - 64rr 1 3 = β 1 β 6 4 r . Thus the required product is
( 1 + 64 r 1 ) ( 1 + 64 r 2 ) = 1 + 64 ( r 1 + r 2 ) + 4096 r 1 r 2 = 1 + 64 β
2 + 4096 β
2 = 8321. (1 + 64r_1)(1 + 64r_2) = 1 + 64(r_1 + r_2) + 4096r_1r_2 = 1 + 64 \cdot 2 + 4096 \cdot 2 = 8321.
( 1 + 6 4 r 1 β ) ( 1 + 6 4 r 2 β ) = 1 + 6 4 ( r 1 β + r 2 β ) + 4 0 9 6 r 1 β r 2 β = 1 + 6 4 β
2 + 4 0 9 6 β
2 = 8 3 2 1 .
The requested remainder is 321 \boxed{321}3 2 1 β .
OR \textbf{OR}
OR
As in the first solution, the product can be expressed as ( r 1 13 β 1 ) ( r 2 13 β 1 ) (r_1^{13} - 1)(r_2^{13} - 1)( r 1 1 3 β β 1 ) ( r 2 1 3 β β 1 ) , where r 1 r_1r 1 β and r 2 r_2r 2 β are the two roots of the quadratic polynomial p ( x ) = x 2 β 2 x + 2 p(x) = x^2 - 2x + 2p ( x ) = x 2 β 2 x + 2 , which are 1 Β± i 1 \pm i1 Β± i . Note that
1 Β± i = 2 ( cos β‘ ( Ο 4 ) + i sin β‘ ( Β± Ο 4 ) ) . 1 \pm i = \sqrt{2} \left(\cos \left(\frac{\pi}{4}\right) + i \sin \left(\pm \frac{\pi}{4}\right)\right).
1 Β± i = 2 β ( cos ( 4 Ο β ) + i sin ( Β± 4 Ο β ) ) .
By de Moivre's Theorem
( 1 + i ) 13 = ( 2 ) 13 ( cos β‘ 13 Ο 4 + i sin β‘ 13 Ο 4 ) = 64 2 ( β 1 2 β i 2 ) = β 64 β 64 i . (1 + i)^{13} = (\sqrt{2})^{13} \left(\cos \frac{13\pi}{4} + i \sin \frac{13\pi}{4}\right) = 64\sqrt{2} \left(-\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right) = -64 - 64i.
( 1 + i ) 1 3 = ( 2 β ) 1 3 ( cos 4 1 3 Ο β + i sin 4 1 3 Ο β ) = 6 4 2 β ( β 2 β 1 β β 2 β i β ) = β 6 4 β 6 4 i .
Taking the conjugate of both sides gives ( 1 β i ) 13 = β 64 + 64 i (1 - i)^{13} = -64 + 64i( 1 β i ) 1 3 = β 6 4 + 6 4 i . Therefore
( r 1 13 β 1 ) ( r 2 13 β 1 ) = ( β 65 β 64 i ) ( β 65 + 64 i ) = 6 5 2 + 6 4 2 = 8321 , (r_1^{13} - 1)(r_2^{13} - 1) = (-65 - 64i)(-65 + 64i) = 65^2 + 64^2 = 8321,
( r 1 1 3 β β 1 ) ( r 2 1 3 β β 1 ) = ( β 6 5 β 6 4 i ) ( β 6 5 + 6 4 i ) = 6 5 2 + 6 4 2 = 8 3 2 1 ,
as in the first solution.
The problems on this page are the property of the MAA's American Mathematics Competitions