In an equiangular pentagon, the sum of the squares of the side lengths equals 308 3083 0 8 , and the sum of the squares of the diagonal lengths equals 800 8008 0 0 . The square of the perimeter of the pentagon can be expressed as m n m \sqrt{n}m n β , where m mm and n nn are positive integers and n nn is not divisible by the square of any prime. Find m + n m+nm + n .
Announcement
Random Math Together Program - Free for USA(J)MO Qualifiers
Our together program brings together high-achieving students nationwide for team-based problem solving and to prepare for competitions such as HMMT, PUMaC, and more.
Eligibility: USA(J)MO qualifiers β’ Spots limited
Let
v β 1 = A B β , v β 2 = B C β , v β 3 = C D β , v β 4 = D E β , v β 5 = E A β . \vec v_1=\overrightarrow{AB},\quad
\vec v_2=\overrightarrow{BC},\quad
\vec v_3=\overrightarrow{CD},\quad
\vec v_4=\overrightarrow{DE},\quad
\vec v_5=\overrightarrow{EA}.
v 1 β = A B , v 2 β = B C , v 3 β = C D , v 4 β = D E , v 5 β = E A .
The diagonals correspond to the vectors v β 1 + v β 2 , v β 2 + v β 3 , v β 3 + v β 4 , v β 4 + v β 5 \vec v_1 + \vec v_2, \vec v_2 + \vec v_3, \vec v_3 + \vec v_4, \vec v_4 + \vec v_5v 1 β + v 2 β , v 2 β + v 3 β , v 3 β + v 4 β , v 4 β + v 5 β , and v β 5 + v β 1 \vec v_5 + \vec v_1v 5 β + v 1 β , and so:
β i = 1 5 β£ v β i + v β i + 1 β£ 2 = β i = 1 5 ( β£ v i β β£ 2 + β£ v i + 1 β β£ 2 ) + 2 β
β i = 1 5 v β i β
v β i + 1 = 2 ( β i = 1 5 β£ v i β β£ 2 + β i = 1 5 v β i β
v β i + 1 ) = 800 \begin{aligned}
\sum_{i = 1}^{5} |\vec v_i+\vec v_{i+1}|^2 &= \sum_{i = 1}^{5} \left(|\vec{v_i}|^2 + |\vec{v_{i + 1}}|^2\right) + 2 \cdot \sum_{i = 1}^{5} \vec v_i \cdot \vec v_{i + 1} \\
&= 2\left(\sum_{i = 1}^{5} |\vec{v_i}|^2 + \sum_{i = 1}^{5} \vec v_i \cdot \vec v_{i + 1}\right) = 800
\end{aligned}
i = 1 β 5 β β£ v i β + v i + 1 β β£ 2 β = i = 1 β 5 β ( β£ v i β β β£ 2 + β£ v i + 1 β β β£ 2 ) + 2 β
i = 1 β 5 β v i β β
v i + 1 β = 2 ( i = 1 β 5 β β£ v i β β β£ 2 + i = 1 β 5 β v i β β
v i + 1 β ) = 8 0 0 β
Here we have adopted the convention that v β k = v β k β 5 \vec v_k = \vec v_{k - 5}v k β = v k β 5 β for k > 5 k > 5k > 5 . Since it is given that β i = 1 5 β£ v i β β£ 2 = 308 \sum_{i = 1}^{5} |\vec{v_i}|^2 = 308β i = 1 5 β β£ v i β β β£ 2 = 3 0 8 , we deduce that β i = 1 5 v β i β
v β i + 1 = 92 \sum_{i = 1}^{5} \vec v_i \cdot \vec v_{i + 1} = 92β i = 1 5 β v i β β
v i + 1 β = 9 2 .
Now, note that since the pentagon is closed:
v β 1 + v β 2 + v β 3 + v β 4 + v β 5 = 0. \vec v_1+\vec v_2+\vec v_3+\vec v_4+\vec v_5=0.
v 1 β + v 2 β + v 3 β + v 4 β + v 5 β = 0 .
β£ v β 1 + v β 2 + v β 3 + v β 4 + v β 5 β£ 2 = β i = 1 5 β£ v i β β£ 2 + 2 β
β i = 1 5 v β i β
v β i + 1 + 2 β
β i = 1 5 v β i β
v β i + 1 = 308 + 2 β
92 + 2 β
β i = 1 5 v β i β
v β i + 2 = 0 \begin{aligned}
\left|\vec v_1+\vec v_2+\vec v_3+\vec v_4+\vec v_5\right|^2 &= \sum_{i = 1}^{5} |\vec{v_i}|^2 + 2 \cdot \sum_{i = 1}^{5} \vec v_i \cdot \vec v_{i + 1} + 2 \cdot \sum_{i = 1}^{5} \vec v_i \cdot \vec v_{i + 1} \\
&= 308 + 2 \cdot 92 + 2 \cdot \sum_{i = 1}^{5} \vec v_i \cdot \vec v_{i + 2} = 0
\end{aligned}
β£ v 1 β + v 2 β + v 3 β + v 4 β + v 5 β β£ 2 β = i = 1 β 5 β β£ v i β β β£ 2 + 2 β
i = 1 β 5 β v i β β
v i + 1 β + 2 β
i = 1 β 5 β v i β β
v i + 1 β = 3 0 8 + 2 β
9 2 + 2 β
i = 1 β 5 β v i β β
v i + 2 β = 0 β
and so β i = 1 5 v β i β
v β i + 2 = β 246 \sum_{i = 1}^{5} \vec v_i \cdot \vec v_{i + 2} = -246β i = 1 5 β v i β β
v i + 2 β = β 2 4 6 .
Finally, the square of the perimeter is given by:
( β£ v β 1 β£ + β£ v β 2 β£ + β£ v β 3 β£ + β£ v β 4 β£ + β£ v β 5 β£ ) 2 = β i = 1 5 β£ v β i β£ 2 + 2 β i = 1 5 β£ v β i β£ β
β£ v β i + 1 β£ + 2 β i = 1 5 β£ v β i β£ β
β£ v β i + 2 β£ = β i = 1 5 β£ v β i β£ 2 + 2 cos β‘ 7 2 β β i = 1 5 v β i β
v β i + 1 + 2 cos β‘ 14 4 β β i = 1 5 v β i β
v β i + 2 = 308 + 2 ( 5 + 1 ) β
92 β 2 ( 5 β 1 ) β
( β 246 ) = 676 5 \begin{aligned}
\left(|\vec v_1| + |\vec v_2| + |\vec v_3| + |\vec v_4| + |\vec v_5|\right)^2 &= \sum_{i = 1}^{5} |\vec v_i|^2 + 2 \sum_{i = 1}^{5} |\vec v_i| \cdot |\vec v_{i + 1}| + 2 \sum_{i = 1}^{5} |\vec v_i| \cdot |\vec v_{i + 2}| \\
&= \sum_{i = 1}^{5} |\vec v_i|^2 + \frac{2}{\cos 72^{\circ}} \sum_{i = 1}^{5} \vec v_i \cdot \vec v_{i + 1} + \frac{2}{\cos 144^{\circ}} \sum_{i = 1}^{5} \vec v_i \cdot \vec v_{i + 2} \\
&= 308 + 2\left(\sqrt{5} + 1\right) \cdot 92 - 2\left(\sqrt{5} - 1\right) \cdot (-246) = 676\sqrt{5}
\end{aligned}
( β£ v 1 β β£ + β£ v 2 β β£ + β£ v 3 β β£ + β£ v 4 β β£ + β£ v 5 β β£ ) 2 β = i = 1 β 5 β β£ v i β β£ 2 + 2 i = 1 β 5 β β£ v i β β£ β
β£ v i + 1 β β£ + 2 i = 1 β 5 β β£ v i β β£ β
β£ v i + 2 β β£ = i = 1 β 5 β β£ v i β β£ 2 + cos 7 2 β 2 β i = 1 β 5 β v i β β
v i + 1 β + cos 1 4 4 β 2 β i = 1 β 5 β v i β β
v i + 2 β = 3 0 8 + 2 ( 5 β + 1 ) β
9 2 β 2 ( 5 β β 1 ) β
( β 2 4 6 ) = 6 7 6 5 β β
so m + n = 676 + 5 = 681 m + n = 676 + 5 = \boxed{681}m + n = 6 7 6 + 5 = 6 8 1 β .
Let the side lengths of the pentagon be a , b , c , d , e a,b,c,d,ea , b , c , d , e . Then, we know that a 2 + b 2 + c 2 + d 2 + e 2 = 308 a^2+b^2+c^2+d^2+e^2=308a 2 + b 2 + c 2 + d 2 + e 2 = 3 0 8 , and furthermore note that cos β‘ 10 8 β = 1 4 ( 1 β 5 ) \cos108^\circ=\dfrac 14(1-\sqrt 5)cos 1 0 8 β = 4 1 β ( 1 β 5 β ) . Thus, the diagonal between side a aa and b bb has length
diagonal 2 = a 2 + b 2 β 2 a b β
cos β‘ angle between a and b = a 2 + b 2 β 2 a b β
1 4 ( 1 β 5 ) = a 2 + b 2 + a b β
5 β 1 2 \text{diagonal}^2=a^2+b^2-2ab\cdot \cos\text{angle between $a$ and $b$}=a^2+b^2-2ab\cdot\dfrac 14(1-\sqrt 5)=a^2+b^2+ab\cdot\dfrac{\sqrt 5-1}2
diagonal 2 = a 2 + b 2 β 2 a b β
cos angle between a and b = a 2 + b 2 β 2 a b β
4 1 β ( 1 β 5 β ) = a 2 + b 2 + a b β
2 5 β β 1 β
Thus adding these up, we get
β diagonal 2 = 2 ( a 2 + b 2 + c 2 + d 2 + e 2 ) + ( a b + b c + c d + d e + e a ) β
5 β 1 2 = 800 \sum\text{diagonal}^2=2(a^2+b^2+c^2+d^2+e^2)+(ab+bc+cd+de+ea)\cdot\dfrac{\sqrt 5-1}2=800
β diagonal 2 = 2 ( a 2 + b 2 + c 2 + d 2 + e 2 ) + ( a b + b c + c d + d e + e a ) β
2 5 β β 1 β = 8 0 0
Thus we get
a b + b c + c d + d e + e a = ( 800 β 2 β
308 ) β
( 5 β 1 2 ) β 1 = 184 β
1 + 5 2 = 92 ( 1 + 5 ) ab+bc+cd+de+ea=(800-2\cdot 308)\cdot\left(\dfrac{\sqrt 5-1}2\right)^{-1}=184\cdot\dfrac{1+\sqrt 5}2=92(1+\sqrt 5)
a b + b c + c d + d e + e a = ( 8 0 0 β 2 β
3 0 8 ) β
( 2 5 β β 1 β ) β 1 = 1 8 4 β
2 1 + 5 β β = 9 2 ( 1 + 5 β )
Now orient the pentagon so that the side a aa is horizontal. Then, each side is a ΞΈ = 7 2 β \theta=72^\circΞΈ = 7 2 β rotation from the x xx -axis, so the pentagon's sides are of the form:
Side Length Angle ( ΞΈ ) Horizontal Component ( s cos β‘ ΞΈ ) Vertical Component ( s sin β‘ ΞΈ ) 1 a 0 β a 0 2 b 7 2 β b cos β‘ 7 2 β b sin β‘ 7 2 β 3 c 14 4 β c cos β‘ 14 4 β c sin β‘ 14 4 β 4 d 21 6 β d cos β‘ 21 6 β d sin β‘ 21 6 β 5 e 28 8 β e cos β‘ 28 8 β e sin β‘ 28 8 β \begin{array}{ccccc}
\textbf{Side} & \textbf{Length} & \textbf{Angle } (\theta) & \textbf{Horizontal Component } (s \cos \theta) & \textbf{Vertical Component } (s \sin \theta) \\ \hline
1 & a & 0^\circ & a & 0 \\
2 & b & 72^\circ & b \cos 72^\circ & b \sin 72^\circ \\
3 & c & 144^\circ & c \cos 144^\circ & c \sin 144^\circ \\
4 & d & 216^\circ & d \cos 216^\circ & d \sin 216^\circ \\
5 & e & 288^\circ & e \cos 288^\circ & e \sin 288^\circ
\end{array}
Side 1 2 3 4 5 β Length a b c d e β Angle ( ΞΈ ) 0 β 7 2 β 1 4 4 β 2 1 6 β 2 8 8 β β Horizontal Component ( s cos ΞΈ ) a b cos 7 2 β c cos 1 4 4 β d cos 2 1 6 β e cos 2 8 8 β β Vertical Component ( s sin ΞΈ ) 0 b sin 7 2 β c sin 1 4 4 β d sin 2 1 6 β e sin 2 8 8 β β β
Note that cos β‘ ΞΈ = cos β‘ ( 36 0 β β ΞΈ ) \cos\theta=\cos(360^\circ-\theta)cos ΞΈ = cos ( 3 6 0 β β ΞΈ ) , and the overall horizontal and vertical components are zero. Thus,
a + ( b + e ) cos β‘ 7 2 β + ( c + e ) cos β‘ 14 4 β = 0 a+(b+e)\cos 72^\circ+(c+e)\cos 144^\circ=0
a + ( b + e ) cos 7 2 β + ( c + e ) cos 1 4 4 β = 0
0 + ( b + e ) sin β‘ 7 2 β + ( c + e ) sin β‘ 14 4 β = 0 0+(b+e)\sin 72^\circ+(c+e)\sin 144^\circ=0
0 + ( b + e ) sin 7 2 β + ( c + e ) sin 1 4 4 β = 0
If we square and add these, we get
β ( side 2 β
2 ΞΈ + side 2 β
2 ΞΈ ) + 2 β side 1 β
side 2 β
( cos β‘ ΞΈ 1 cos β‘ ΞΈ 2 + sin β‘ ΞΈ 1 sin β‘ ΞΈ 2 ) \sum (\text{side}^2\cdot\cos^2\theta+\text{side}^2\cdot\sin^2\theta)+2\sum\text{side 1}\cdot\text{side 2}\cdot(\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2)
β ( side 2 β
cos 2 ΞΈ + side 2 β
sin 2 ΞΈ ) + 2 β side 1 β
side 2 β
( cos ΞΈ 1 β cos ΞΈ 2 β + sin ΞΈ 1 β sin ΞΈ 2 β )
Using the fact that cos β‘ ( ΞΈ 1 β ΞΈ 2 ) = cos β‘ ΞΈ 1 cos β‘ ΞΈ 2 + sin β‘ ΞΈ 1 sin β‘ ΞΈ 2 \cos(\theta_1-\theta_2)=\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2cos ( ΞΈ 1 β β ΞΈ 2 β ) = cos ΞΈ 1 β cos ΞΈ 2 β + sin ΞΈ 1 β sin ΞΈ 2 β and 2 ΞΈ + 2 ΞΈ = 1 \sin^2\theta+\cos^2\theta=1sin 2 ΞΈ + cos 2 ΞΈ = 1 , we get
0 = β side 2 + 2 β side 1 β
side 2 β
cos β‘ ( angle between side 1, 2 ) 0=\sum\text{side}^2+2\sum\text{side 1}\cdot\text{side 2}\cdot\cos(\text{angle between side 1, 2})
0 = β side 2 + 2 β side 1 β
side 2 β
cos ( angle between side 1, 2 )
The angle between sides is 7 2 β 72^\circ7 2 β for adjacent sides and 144 4 β 1444^\circ1 4 4 4 β for non-adjacent sides, so we can rewrite that as
0 = ( a 2 + b 2 + c 2 + d 2 + e 2 ) + cos β‘ 7 2 β β
( a b + b c + c d + d e + e a ) + cos β‘ 14 4 β β
( a c + b d + c e + d a + e b ) 0=(a^2+b^2+c^2+d^2+e^2)+\cos{72^\circ}\cdot(ab+bc+cd+de+ea)+\cos{144^\circ}\cdot(ac+bd+ce+da+eb)
0 = ( a 2 + b 2 + c 2 + d 2 + e 2 ) + cos 7 2 β β
( a b + b c + c d + d e + e a ) + cos 1 4 4 β β
( a c + b d + c e + d a + e b )
Thus, we get that as cos β‘ 14 4 β = β cos β‘ 3 6 β = β 1 4 ( 5 + 1 ) \cos 144^\circ=-\cos 36^\circ=-\dfrac 14(\sqrt 5+1)cos 1 4 4 β = β cos 3 6 β = β 4 1 β ( 5 β + 1 ) ,
a c + b d + c e + d a + e b = ( 308 + 5 β 1 2 β
( 92 + 92 5 ) ) β
( 5 + 1 2 ) β 1 = 246 5 β 246 ac+bd+ce+da+eb=\left(308+\dfrac{\sqrt 5-1}2\cdot(92+92\sqrt 5)\right)\cdot\left(\dfrac{\sqrt 5+1}2\right)^{-1}=246\sqrt 5-246
a c + b d + c e + d a + e b = ( 3 0 8 + 2 5 β β 1 β β
( 9 2 + 9 2 5 β ) ) β
( 2 5 β + 1 β ) β 1 = 2 4 6 5 β β 2 4 6
Thus
( a + b + c + d + e ) 2 = 308 + 2 ( 92 + 92 5 ) + 2 ( 246 5 β 246 ) = 676 5 (a+b+c+d+e)^2=308+2(92+92\sqrt 5)+2(246\sqrt 5-246)=676\sqrt 5
( a + b + c + d + e ) 2 = 3 0 8 + 2 ( 9 2 + 9 2 5 β ) + 2 ( 2 4 6 5 β β 2 4 6 ) = 6 7 6 5 β
for an answer of so m + n = 676 + 5 = 681 m + n = 676 + 5 = \boxed{681}m + n = 6 7 6 + 5 = 6 8 1 β .
Suppose that the sides of the pentagon are a 1 , a 2 , β¦ , a 5 a_1, a_2, \dots, a_5a 1 β , a 2 β , β¦ , a 5 β , and that:
b β a = a 1 c β b = a 2 β
Ο d β c = a 3 β
Ο 2 e β d = a 4 β
Ο 3 a β e = a 5 β
Ο 4 b - a = a_1 \qquad c - b = a_2 \cdot \omega \qquad d - c = a_3 \cdot \omega^2 \qquad e - d = a_4 \cdot \omega^3 \qquad a - e = a_5 \cdot \omega^4
b β a = a 1 β c β b = a 2 β β
Ο d β c = a 3 β β
Ο 2 e β d = a 4 β β
Ο 3 a β e = a 5 β β
Ο 4
where Ο = e 2 Ο i / 5 \omega = e^{2\pi i / 5}Ο = e 2 Ο i / 5 is a fifth root of unity. Note that this implies:
a 1 + a 2 β
Ο + a 3 β
Ο 2 + a 4 β
Ο 3 + a 5 β
Ο 4 = 0 a_1 + a_2 \cdot \omega + a_3 \cdot \omega^2 + a_4 \cdot \omega^3 + a_5 \cdot \omega^4 = 0
a 1 β + a 2 β β
Ο + a 3 β β
Ο 2 + a 4 β β
Ο 3 + a 5 β β
Ο 4 = 0
Note that:
β i = 1 5 β£ a i β
Ο i β 1 β£ 2 = β i = 1 5 a i 2 = 308 \sum_{i = 1}^{5} |a_i \cdot \omega^{i - 1}|^2 = \sum_{i = 1}^{5} a_i^2 = 308
i = 1 β 5 β β£ a i β β
Ο i β 1 β£ 2 = i = 1 β 5 β a i 2 β = 3 0 8
and
β i = 1 5 β£ a i β
Ο i β 1 + a i + 1 β
Ο i β£ 2 = β i = 1 5 β£ a i + a i + 1 β
Ο β£ 2 = β i = 1 5 ( a i + a i + 1 β
Ο ) β
( a i + a i + 1 β
1 Ο ) = 2 β i = 1 5 a i 2 + ( Ο + 1 Ο ) β i = 1 5 a i a i + 1 = 2 β
308 + ( 2 cos β‘ 7 2 β ) β
β i = 1 5 a i a i + 1 = 800 \begin{aligned}
\sum_{i = 1}^{5} |a_i \cdot \omega^{i - 1} + a_{i + 1} \cdot \omega^i|^2 &= \sum_{i = 1}^{5} |a_i + a_{i + 1} \cdot \omega|^2 \\
&= \sum_{i = 1}^{5} \left(a_i + a_{i + 1} \cdot \omega\right) \cdot \left(a_i + a_{i + 1} \cdot \dfrac{1}{\omega}\right) \\
&= 2\sum_{i = 1}^{5} a_i^2 + \left(\omega + \dfrac{1}{\omega}\right)\sum_{i = 1}^{5} a_ia_{i + 1} \\
&= 2 \cdot 308 + (2\cos 72^{\circ}) \cdot \sum_{i = 1}^{5} a_i a_{i + 1} \\
&= 800
\end{aligned}
i = 1 β 5 β β£ a i β β
Ο i β 1 + a i + 1 β β
Ο i β£ 2 β = i = 1 β 5 β β£ a i β + a i + 1 β β
Ο β£ 2 = i = 1 β 5 β ( a i β + a i + 1 β β
Ο ) β
( a i β + a i + 1 β β
Ο 1 β ) = 2 i = 1 β 5 β a i 2 β + ( Ο + Ο 1 β ) i = 1 β 5 β a i β a i + 1 β = 2 β
3 0 8 + ( 2 cos 7 2 β ) β
i = 1 β 5 β a i β a i + 1 β = 8 0 0 β
and so:
β i = 1 5 a i a i + 1 = 92 cos β‘ 7 2 β = 92 ( 5 + 1 ) \sum_{i = 1}^{5} a_i a_{i + 1} = \dfrac{92}{\cos 72^{\circ}} = 92(\sqrt{5} + 1)
i = 1 β 5 β a i β a i + 1 β = cos 7 2 β 9 2 β = 9 2 ( 5 β + 1 )
Now, note that:
a 1 + a 2 β
Ο + a 3 β
Ο 2 + a 4 β
Ο 3 + a 5 β
Ο 4 = 0 a_1 + a_2 \cdot \omega + a_3 \cdot \omega^2 + a_4 \cdot \omega^3 + a_5 \cdot \omega^4 = 0
a 1 β + a 2 β β
Ο + a 3 β β
Ο 2 + a 4 β β
Ο 3 + a 5 β β
Ο 4 = 0
and so:
( a 1 + a 2 β
Ο + a 3 β
Ο 2 + a 4 β
Ο 3 + a 5 β
Ο 4 ) β
( a 1 + a 2 β
1 Ο + a 3 β
1 Ο 2 + a 4 β
1 Ο 3 + a 5 β
1 Ο 4 ) = β i = 1 5 a i 2 + 2 ( Ο + 1 Ο ) β i = 1 5 a i a i + 1 + 2 ( Ο 2 + 1 Ο 2 ) β i = 1 5 a i a i + 2 = 308 + 2 β
92 + 2 β
cos β‘ 14 4 β β i = 1 5 a i a i + 2 = 0 \begin{aligned}
&\left(a_1 + a_2 \cdot \omega + a_3 \cdot \omega^2 + a_4 \cdot \omega^3 + a_5 \cdot \omega^4\right) \cdot \left(a_1 + a_2 \cdot \dfrac{1}{\omega} + a_3 \cdot \dfrac{1}{\omega^2} + a_4 \cdot \dfrac{1}{\omega^3} + a_5 \cdot \dfrac{1}{\omega^4}\right) \\
= &\sum_{i = 1}^{5} a_i^2 + 2\left(\omega + \dfrac{1}{\omega}\right) \sum_{i = 1}^{5} a_i a_{i + 1} + 2\left(\omega^2 + \dfrac{1}{\omega^2}\right) \sum_{i = 1}^{5} a_i a_{i + 2} \\
&= 308 + 2 \cdot 92 + 2 \cdot \cos 144^{\circ} \sum_{i = 1}^{5} a_i a_{i + 2} = 0
\end{aligned}
= β ( a 1 β + a 2 β β
Ο + a 3 β β
Ο 2 + a 4 β β
Ο 3 + a 5 β β
Ο 4 ) β
( a 1 β + a 2 β β
Ο 1 β + a 3 β β
Ο 2 1 β + a 4 β β
Ο 3 1 β + a 5 β β
Ο 4 1 β ) i = 1 β 5 β a i 2 β + 2 ( Ο + Ο 1 β ) i = 1 β 5 β a i β a i + 1 β + 2 ( Ο 2 + Ο 2 1 β ) i = 1 β 5 β a i β a i + 2 β = 3 0 8 + 2 β
9 2 + 2 β
cos 1 4 4 β i = 1 β 5 β a i β a i + 2 β = 0 β
so β i = 1 5 a i a i + 2 = β 492 2 β
cos β‘ 14 4 β = β 246 ( 5 β 1 ) \sum \limits_{i = 1}^{5} a_i a_{i + 2} = -\dfrac{492}{2 \cdot \cos 144^{\circ}} = -246\left(\sqrt{5} - 1\right)i = 1 β 5 β a i β a i + 2 β = β 2 β
cos 1 4 4 β 4 9 2 β = β 2 4 6 ( 5 β β 1 ) . Therefore, the square of the perimeter is given by:
( a 1 + a 2 + a 3 + a 4 + a 5 ) 2 = β i = 1 5 a i 2 + 2 β i = 1 5 a i a i + 1 + 2 β i = 1 5 a i a i + 2 = 308 + 2 β
( 92 ( 5 + 1 ) ) + 2 β
( β 246 ( 5 β 1 ) ) = 308 + 184 5 + 184 β 492 + 492 5 = 676 5 \begin{aligned}
(a_1 + a_2 + a_3 + a_4 + a_5)^2 &= \sum_{i = 1}^{5} a_i^2 + 2 \sum_{i = 1}^{5} a_i a_{i + 1} + 2 \sum_{i = 1}^{5} a_i a_{i + 2} \\
&= 308 + 2 \cdot \left(92(\sqrt{5} + 1)\right) + 2 \cdot \left(-246(\sqrt{5} - 1)\right) \\
&= 308 + 184\sqrt{5} + 184 - 492 + 492\sqrt{5} = 676\sqrt{5}
\end{aligned}
( a 1 β + a 2 β + a 3 β + a 4 β + a 5 β ) 2 β = i = 1 β 5 β a i 2 β + 2 i = 1 β 5 β a i β a i + 1 β + 2 i = 1 β 5 β a i β a i + 2 β = 3 0 8 + 2 β
( 9 2 ( 5 β + 1 ) ) + 2 β
( β 2 4 6 ( 5 β β 1 ) ) = 3 0 8 + 1 8 4 5 β + 1 8 4 β 4 9 2 + 4 9 2 5 β = 6 7 6 5 β β
so m + n = 676 + 5 = 681 m + n = 676 + 5 = \boxed{\textbf{681}}m + n = 6 7 6 + 5 = 681 β .
The problems on this page are the property of the MAA's American Mathematics Competitions