Problem:
Both roots of the quadratic equation  are prime numbers. The number of possible values of  is
Answer Choices:
A.  
B.  
C.  
D.  
E. more than four 
Solution:
Let and be two primes that are roots of . Then
so and . Since is odd, one of the primes must be and the other . Thus, there is exactly possible value for , namely .
Answer: .
The problems on this page are the property of the MAA's American Mathematics Competitions