Problem:
In trapezoid A B C D A B C DA B C D with bases A B βΎ \overline{A B}A B and C D βΎ \overline{C D}C D , we have A B = 52 , B C = 12 A B=52, B C=12A B = 5 2 , B C = 1 2 , C D = 39 C D=39C D = 3 9 , and D A = 5 D A=5D A = 5 . The area of A B C D A B C DA B C D is
Answer Choices:
A. 182 1821 8 2
B. 195 1951 9 5
C. 210 2102 1 0
D. 234 2342 3 4
E. 260 2602 6 0
Solution:
First drop perpendiculars from D DD and C CC to A B βΎ \overline{A B}A B . Let E EE and F FF be the feet of the perpendiculars to A B βΎ \overline{A B}A B from D DD and C CC , respectively, and let
h = D E = C F , x = A E , and y = F B h=D E=C F, \quad x=A E, \quad \text { and } \quad y=F B
h = D E = C F , x = A E , and y = F B
Then
25 = h 2 + x 2 , 144 = h 2 + y 2 , and 13 = x + y 25=h^{2}+x^{2}, \quad 144=h^{2}+y^{2}, \quad \text { and } \quad 13=x+y
2 5 = h 2 + x 2 , 1 4 4 = h 2 + y 2 , and 1 3 = x + y
So
144 = h 2 + y 2 = h 2 + ( 13 β x ) 2 = h 2 + x 2 + 169 β 26 x = 25 + 169 β 26 x 144=h^{2}+y^{2}=h^{2}+(13-x)^{2}=h^{2}+x^{2}+169-26 x=25+169-26 x
1 4 4 = h 2 + y 2 = h 2 + ( 1 3 β x ) 2 = h 2 + x 2 + 1 6 9 β 2 6 x = 2 5 + 1 6 9 β 2 6 x
which gives x = 50 / 26 = 25 / 13 x=50 / 26=25 / 13x = 5 0 / 2 6 = 2 5 / 1 3 , and
h = 5 2 β ( 25 13 ) 2 = 5 1 β 25 169 = 5 144 169 = 60 13 h=\sqrt{5^{2}-\left(\dfrac{25}{13}\right)^{2}}=5 \sqrt{1-\dfrac{25}{169}}=5 \sqrt{\dfrac{144}{169}}=\dfrac{60}{13}
h = 5 2 β ( 1 3 2 5 β ) 2 β = 5 1 β 1 6 9 2 5 β β = 5 1 6 9 1 4 4 β β = 1 3 6 0 β
Hence
Area ( A B C D ) = 1 2 ( 39 + 52 ) β
60 13 = 210. \text { Area }(A B C D)=\dfrac{1}{2}(39+52) \cdot \dfrac{60}{13}=210.
Area ( A B C D ) = 2 1 β ( 3 9 + 5 2 ) β
1 3 6 0 β = 2 1 0 .
OR \textbf{OR}
OR
Extend A D βΎ \overline{A D}A D and B C βΎ \overline{B C}B C to intersect at P PP . Since β³ P D C \triangle P D Cβ³ P D C and β³ P A B \triangle P A Bβ³ P A B are similar, we have
P D P D + 5 = 39 52 = P C P C + 12 \dfrac{P D}{P D+5}=\dfrac{39}{52}=\dfrac{P C}{P C+12}
P D + 5 P D β = 5 2 3 9 β = P C + 1 2 P C β
So P D = 15 P D=15P D = 1 5 and P C = 36 P C=36P C = 3 6 . Note that 15 , 36 15,361 5 , 3 6 , and 39 393 9 are three times 5 , 12 5,125 , 1 2 , and 13 131 3 , respectively, so β A P B \angle A P Bβ A P B is a right angle. The area of the trapezoid is the difference of the areas of β³ P A B \triangle P A Bβ³ P A B and β³ P D C \triangle P D Cβ³ P D C , so
Area β‘ ( A B C D ) = 1 2 ( 20 ) ( 48 ) β 1 2 ( 15 ) ( 36 ) = 210. \operatorname{Area}(A B C D)=\dfrac{1}{2}(20)(48)-\dfrac{1}{2}(15)(36)=210.
A r e a ( A B C D ) = 2 1 β ( 2 0 ) ( 4 8 ) β 2 1 β ( 1 5 ) ( 3 6 ) = 2 1 0 .
OR \textbf{OR}
OR
Draw the line through D DD parallel to B C βΎ \overline{B C}B C , intersecting A B βΎ \overline{A B}A B at E EE . Then B C D E B C D EB C D E is a parallelogram, so D E = 12 , E B = 39 D E=12, E B=39D E = 1 2 , E B = 3 9 , and A E = 52 β 39 = 13 A E=52-39=13A E = 5 2 β 3 9 = 1 3 . Thus D E 2 + A D 2 = A E 2 D E^{2}+A D^{2}=A E^{2}D E 2 + A D 2 = A E 2 , and β³ A D E \triangle A D Eβ³ A D E is a right triangle. Let h hh be the altitude from D DD to A E βΎ \overline{A E}A E , and note that
Area β‘ ( A D E ) = 1 2 ( 5 ) ( 12 ) = 1 2 ( 13 ) ( h ) \operatorname{Area}(A D E)=\dfrac{1}{2}(5)(12)=\dfrac{1}{2}(13)(h)
A r e a ( A D E ) = 2 1 β ( 5 ) ( 1 2 ) = 2 1 β ( 1 3 ) ( h )
so h = 60 / 13 h=60 / 13h = 6 0 / 1 3 . Thus
Area β‘ ( A B C D ) = 60 13 β
1 2 ( 39 + 52 ) = 210. \operatorname{Area}(A B C D)=\dfrac{60}{13} \cdot \dfrac{1}{2}(39+52)=210.
A r e a ( A B C D ) = 1 3 6 0 β β
2 1 β ( 3 9 + 5 2 ) = 2 1 0 .
Answer: C \boxed{C}C β .
The problems on this page are the property of the MAA's American Mathematics Competitions