Problem:  
In trapezoid A B C D  A B C DA B C D   with bases A B βΎ  \overline{A B}A B   and C D βΎ  \overline{C D}C D  , we have A B = 52 , B C = 12  A B=52, B C=12A B = 5 2 , B C = 1 2  , C D = 39  C D=39C D = 3 9  , and D A = 5  D A=5D A = 5  . The area of A B C D  A B C DA B C D   is
Answer Choices: 
A. 182  1821 8 2    
B. 195  1951 9 5    
C. 210  2102 1 0    
D. 234  2342 3 4    
E. 260  2602 6 0   
Solution: 
First drop perpendiculars from D  DD   and C  CC   to A B βΎ  \overline{A B}A B  . Let E  EE   and F  FF   be the feet of the perpendiculars to A B βΎ  \overline{A B}A B   from D  DD   and C  CC  , respectively, and let
h = D E = C F , x = A E ,  and  y = F B  h=D E=C F, \quad x=A E, \quad \text { and } \quad y=F B
h = D E = C F , x = A E ,  and  y = F B 
 
Then
25 = h 2 + x 2 , 144 = h 2 + y 2 ,  and  13 = x + y  25=h^{2}+x^{2}, \quad 144=h^{2}+y^{2}, \quad \text { and } \quad 13=x+y
2 5 = h 2 + x 2 , 1 4 4 = h 2 + y 2 ,  and  1 3 = x + y 
So
144 = h 2 + y 2 = h 2 + ( 13 β x ) 2 = h 2 + x 2 + 169 β 26 x = 25 + 169 β 26 x  144=h^{2}+y^{2}=h^{2}+(13-x)^{2}=h^{2}+x^{2}+169-26 x=25+169-26 x
1 4 4 = h 2 + y 2 = h 2 + ( 1 3 β x ) 2 = h 2 + x 2 + 1 6 9 β 2 6 x = 2 5 + 1 6 9 β 2 6 x 
which gives x = 50 / 26 = 25 / 13  x=50 / 26=25 / 13x = 5 0 / 2 6 = 2 5 / 1 3  , and
h = 5 2 β ( 25 13 ) 2 = 5 1 β 25 169 = 5 144 169 = 60 13  h=\sqrt{5^{2}-\left(\dfrac{25}{13}\right)^{2}}=5 \sqrt{1-\dfrac{25}{169}}=5 \sqrt{\dfrac{144}{169}}=\dfrac{60}{13}
h = 5 2 β ( 1 3 2 5 β ) 2 β = 5 1 β 1 6 9 2 5 β β = 5 1 6 9 1 4 4 β β = 1 3 6 0 β 
Hence
 Area  ( A B C D ) = 1 2 ( 39 + 52 ) β
 60 13 = 210.  \text { Area }(A B C D)=\dfrac{1}{2}(39+52) \cdot \dfrac{60}{13}=210.
 Area  ( A B C D ) = 2 1 β ( 3 9 + 5 2 ) β
 1 3 6 0 β = 2 1 0 . 
OR  \textbf{OR}
OR 
Extend A D βΎ  \overline{A D}A D   and B C βΎ  \overline{B C}B C   to intersect at P  PP  . Since β³ P D C  \triangle P D Cβ³ P D C   and β³ P A B  \triangle P A Bβ³ P A B   are similar, we have
P D P D + 5 = 39 52 = P C P C + 12  \dfrac{P D}{P D+5}=\dfrac{39}{52}=\dfrac{P C}{P C+12}
P D + 5 P D β = 5 2 3 9 β = P C + 1 2 P C β 
So P D = 15  P D=15P D = 1 5   and P C = 36  P C=36P C = 3 6  . Note that 15 , 36  15,361 5 , 3 6  , and 39  393 9   are three times 5 , 12  5,125 , 1 2  , and 13  131 3  , respectively, so β  A P B  \angle A P Bβ  A P B   is a right angle. The area of the trapezoid is the difference of the areas of β³ P A B  \triangle P A Bβ³ P A B   and β³ P D C  \triangle P D Cβ³ P D C  , so
Area β‘ ( A B C D ) = 1 2 ( 20 ) ( 48 ) β 1 2 ( 15 ) ( 36 ) = 210.  \operatorname{Area}(A B C D)=\dfrac{1}{2}(20)(48)-\dfrac{1}{2}(15)(36)=210.
A r e a ( A B C D ) = 2 1 β ( 2 0 ) ( 4 8 ) β 2 1 β ( 1 5 ) ( 3 6 ) = 2 1 0 . 
 
OR  \textbf{OR}
OR 
Draw the line through D  DD   parallel to B C βΎ  \overline{B C}B C  , intersecting A B βΎ  \overline{A B}A B   at E  EE  . Then B C D E  B C D EB C D E   is a parallelogram, so D E = 12 , E B = 39  D E=12, E B=39D E = 1 2 , E B = 3 9  , and A E = 52 β 39 = 13  A E=52-39=13A E = 5 2 β 3 9 = 1 3  . Thus D E 2 + A D 2 = A E 2  D E^{2}+A D^{2}=A E^{2}D E 2 + A D 2 = A E 2  , and β³ A D E  \triangle A D Eβ³ A D E   is a right triangle. Let h  hh   be the altitude from D  DD   to A E βΎ  \overline{A E}A E  , and note that
Area β‘ ( A D E ) = 1 2 ( 5 ) ( 12 ) = 1 2 ( 13 ) ( h )  \operatorname{Area}(A D E)=\dfrac{1}{2}(5)(12)=\dfrac{1}{2}(13)(h)
A r e a ( A D E ) = 2 1 β ( 5 ) ( 1 2 ) = 2 1 β ( 1 3 ) ( h ) 
so h = 60 / 13  h=60 / 13h = 6 0 / 1 3  . Thus
Area β‘ ( A B C D ) = 60 13 β
 1 2 ( 39 + 52 ) = 210.  \operatorname{Area}(A B C D)=\dfrac{60}{13} \cdot \dfrac{1}{2}(39+52)=210.
A r e a ( A B C D ) = 1 3 6 0 β β
 2 1 β ( 3 9 + 5 2 ) = 2 1 0 . 
 
Answer:  C  \boxed{C}C β  .
 
The problems on this page are the property of the MAA's American Mathematics Competitions