Problem:
Let a1β,a2β,...,anβ, be a sequence with the following properties.
(i) a1β=1, and
(ii) a2nβ=nβ
anβ for any positive integer n.
What is the value of a2100β?
Answer Choices:
A. 1
B. 299
C. 2100
D. 24950
E. 29999
Solution:
Note that
a21βa22βa23βa24ββ=a2β=a2β
1β=1β
a1β=20β
20=20,=a4β=a2β
2β=2β
a2β=21β
20=21,=a8β=a2β
4β=4β
a4β=22β
21=21+2,=a16β=a2β
8β=8β
a8β=23β
21+2=21+2+3β
and, in general, .a2nβ=21+2+β―+(nβ1). Because
1+2+3+β¦+(nβ1)=21βn(nβ1)
we have a2100β=2(100)(99)/2=24950.
Answer: Dβ.
The problems on this page are the property of the MAA's American Mathematics Competitions