Problem:
For real numbers a and b, define aβb=a2+b2β. What is the value of
(5β12)β((β12)β(β5))?
Answer Choices:
A. 0
B. 217β
C. 13
D. 132β
E. 26
Solution:
It follows from the definition that
(5β12)β((β12)β(β5))β=52+122ββ(β12)2+(β5)2β=13β13=132+132β=132ββ
Answer: Dβ.
The problems on this page are the property of the MAA's American Mathematics Competitions