Problem:
Let points A=(0,0,0),B=(1,0,0),C=(0,2,0), and D=(0,0,3). Points E, F,G, and H are midpoints of line segments BD,AB,AC, and DC respectively. What is the area of EFGH?
Answer Choices:
A. 2β
B. 325ββ
C. 435ββ
D. 3β
E. 327ββ
Solution:
The midpoint formula gives E=(21β,0,23β),F=(21β,0,0),G=(0,1,0), and H=(0,1,23β). Note that EF=GH=23β,EFβ₯EH,GFβ₯GH, and
EH=FG=(21β)2+12β=25ββ.
Therefore EFGH is a rectangle with area 23ββ 25ββ=(C)435βββ.