Problem:
In rectangle ABCD,AB=20 and BC=10. Let E be a point on CD such that β CBE=15β. What is AE?
Answer Choices:
A. 3203ββ
B. 103β
C. 18
D. 113β
E. 20
Solution:
Let Eβ² be the point on CD such that AEβ²=AB=2AD. Then β³ADEβ² is a 30β60β90β triangle, so β DAEβ²=60β. Hence β BAEβ²=30β. Also, AEβ²=AB implies that β Eβ²BA=β BEβ²A=75β, and then β CBEβ²=15β. Thus it follows that Eβ² and E are the same point. Therefore, AE=AEβ²=AB=(E)20β.