Problem:
Let x=β2016. What is the value of β£β£β£xβ£βxβ£ββ£xβ£β£βx?
Answer Choices:
A. β2016
B. 0
C. 2016
D. 4032
E. 6048
Solution:
β£β£β£β2016β£ββ(β2016)β£ββ£β2016β£β£β(β2016)=β£β£2016+2016β£β2016β£+2016=2016+2016=(D)4032ββ
The problems on this page are the property of the MAA's American Mathematics Competitions