Problem:
The function f is defined by
f(x)=ββ£xβ£βββ£βxββ£
for all real numbers x, where βrβ denotes the greatest integer less than or equal to the real number r. What is the range of f?
Answer Choices:
A. {β1,0}
B. the set of nonpositive integers
C. {β1,0,1}
D. {0}
E. the set of nonnegative integers
Solution:
If xβ₯0, then β£xβ£=x, so ββ£xβ£β=βxβ. Furthermore, if xβ₯0, then βxββ₯0, so ββxββ£=βxβ. Therefore f(x)=βxβββxβ=0 when xβ₯0.
Otherwise, x<0, so β£xβ£=βx.
If x<0 and x is an integer, then ββ£xβ£β=ββxβ=βx and β£βxββ£= β£xβ£=βx. Therefore f(x)=(βx)β(βx)=0 in this case.
If x<0 and x is not an integer, then ββ£xβ£β=ββxβ=ββxββ1 and β£βxββ£=ββxβ. Therefore f(x)=(ββxββ1)β(ββxβ)=β1 in this case.
Thus the range of f(x) is (A){β1,0}β.
The problems on this page are the property of the MAA's American Mathematics Competitions