Problem:
A point P PP is chosen at random inside square A B C D . ABCD.A B C D . The probability that A P βΎ \overline{AP}A P is neither the shortest nor the longest side of β³ A P B \triangle APBβ³ A P B can be written as a + b Ο β c d e \dfrac{a+b\pi-c\sqrt{d}}{e}e a + b Ο β c d β β , where a , b , c , d , e a,b,c,d,ea , b , c , d , e are positive integers, gcd β‘ ( a , b , c , e ) = 1 , \gcd(a,b,c,e)=1,g cd( a , b , c , e ) = 1 , and d dd is not divisible by the square of any prime. What is a + b + c + d + e ? a+b+c+d+e?a + b + c + d + e ?
Answer Choices:
A. 25 252 5
B. 26 262 6
C. 27 272 7
D. 28 282 8
E. 29 292 9
Solution:
Without loss of generality, let the side length of the square A B C D ABCDA B C D be 2 22 . Draw quarter circles of radius 2 22 centered at A AA and B BB . Let G GG be the midpoint of A B ABA B (so A G = B G = 1 AG=BG=1A G = B G = 1 ), let F FF be the midpoint of C D CDC D , and let E EE be the intersection of line F G FGF G with the two arcs.
Since A E = B E = 2 AE=BE=2A E = B E = 2 and A G = 1 AG=1A G = 1 , we have
G E = A E 2 β A G 2 = 4 β 1 = 3 , β G A E = 6 0 β , β D A E = 3 0 β . GE=\sqrt{AE^2-AG^2}=\sqrt{4-1}=\sqrt{3},\qquad \angle GAE=60^\circ,\qquad \angle DAE=30^\circ.
G E = A E 2 β A G 2 β = 4 β 1 β = 3 β , β G A E = 6 0 β , β D A E = 3 0 β .
We can calculate the area of the blue region as
Area of the blue region = [ β³ G E B ] + [ sector A E B ] β [ β³ A E B ] . \text{Area of the blue region}=[\triangle GEB]+[\text{sector }AEB]-[\triangle AEB].
Area of the blue region = [ β³ G E B ] + [ sector A E B ] β [ β³ A E B ] .
We compute each part individually
[ β³ G E A ] = 1 2 β
A G β
G E = 1 2 β
1 β
3 = 3 2 , [ β³ G E B ] = 3 2 , [\triangle GEA]=\dfrac{1}{2}\cdot AG\cdot GE=\dfrac12\cdot 1\cdot \sqrt{3}=\dfrac{\sqrt{3}}{2},\qquad
[\triangle GEB]=\dfrac{\sqrt{3}}{2},
[ β³ G E A ] = 2 1 β β
A G β
G E = 2 1 β β
1 β
3 β = 2 3 β β , [ β³ G E B ] = 2 3 β β ,
[ β³ A E B ] = = 1 2 β
2 3 = 3 , [\triangle AEB]=
=\dfrac12\cdot 2\sqrt{3}=\sqrt{3},
[ β³ A E B ] = = 2 1 β β
2 3 β = 3 β ,
[ sector A E B ] = 6 0 β 36 0 β β
Ο β
2 2 = 1 6 β
4 Ο = 2 Ο 3 . [\text{sector}AEB]=\dfrac{60^\circ}{360^\circ}\cdot \pi\cdot 2^2=\dfrac{1}{6}\cdot 4\pi=\dfrac{2\pi}{3}.
[ sector A E B ] = 3 6 0 β 6 0 β β β
Ο β
2 2 = 6 1 β β
4 Ο = 3 2 Ο β .
Hence
Area of the blue region = 3 2 + 2 Ο 3 β 3 = 2 Ο 3 β 3 2 . \text{Area of the blue region}=\dfrac{\sqrt{3}}{2}+\dfrac{2\pi}{3}-\sqrt{3}=\dfrac{2\pi}{3}-\dfrac{\sqrt{3}}{2}.
Area of the blue region = 2 3 β β + 3 2 Ο β β 3 β = 3 2 Ο β β 2 3 β β .
We can compute the area of the purple region as well:
Purple = [ A G F D ] β [ sector A D E ] β [ β³ A G E ] . \text{Purple}=[AGFD]-[\text{sector }ADE]-[\triangle AGE].
Purple = [ A G F D ] β [ sector A D E ] β [ β³ A G E ] .
Here A G F D AGFDA G F D is the rectangle with width A G = 1 AG=1A G = 1 and height A D = 2 AD=2A D = 2 , so [ A G F D ] = 2 [AGFD]=2[ A G F D ] = 2 .
Also,
[ sector A D E ] = 3 0 β 36 0 β β
Ο β
2 2 = 1 12 β
4 Ο = Ο 3 , [ β³ A G E ] = 3 2 . [\text{sector }ADE]=\dfrac{30^\circ}{360^\circ}\cdot \pi\cdot 2^2
=\dfrac{1}{12}\cdot 4\pi=\dfrac{\pi}{3},\qquad
[\triangle AGE]=\dfrac{\sqrt{3}}{2}.
[ sector A D E ] = 3 6 0 β 3 0 β β β
Ο β
2 2 = 1 2 1 β β
4 Ο = 3 Ο β , [ β³ A G E ] = 2 3 β β .
Thus
Purple = 2 β Ο 3 β 3 2 . \text{Purple}=2-\dfrac{\pi}{3}-\dfrac{\sqrt{3}}{2}.
Purple = 2 β 3 Ο β β 2 3 β β .
Total desired area = Pink + Purple = ( 2 Ο 3 β 3 2 ) + ( 2 β Ο 3 β 3 2 ) = 2 + Ο 3 β 3 . \textbf{Total desired area}=\text{Pink}+\text{Purple}
=\left(\dfrac{2\pi}{3}-\dfrac{\sqrt{3}}{2}\right)+\left(2-\dfrac{\pi}{3}-\dfrac{\sqrt{3}}{2}\right)
=2+\dfrac{\pi}{3}-\sqrt{3}.
Total desired area = Pink + Purple = ( 3 2 Ο β β 2 3 β β ) + ( 2 β 3 Ο β β 2 3 β β ) = 2 + 3 Ο β β 3 β .
Since the square has area 4 44 , the probability equals
P = 2 + Ο 3 β 3 4 = 1 2 + Ο 12 β 3 4 = 6 + Ο β 3 3 12 . \mathbb{P}=\dfrac{2+\dfrac{\pi}{3}-\sqrt{3}}{4}
=\dfrac{1}{2}+\dfrac{\pi}{12}-\dfrac{\sqrt{3}}{4}
=\dfrac{6+\pi-3\sqrt{3}}{12}.
P = 4 2 + 3 Ο β β 3 β β = 2 1 β + 1 2 Ο β β 4 3 β β = 1 2 6 + Ο β 3 3 β β .
Therefore, in the form a + b Ο β c d e \dfrac{a+b\pi-c\sqrt{d}}{e}e a + b Ο β c d β β we have
a = 6 , b = 1 , c = 3 , d = 3 , e = 12 , a=6,\quad b=1,\quad c=3,\quad d=3,\quad e=12,
a = 6 , b = 1 , c = 3 , d = 3 , e = 1 2 ,
so
a + b + c + d + e = (A) 25 a+b+c+d+e={\color{OliveGreen}\boxed{{\textbf{(A)~25}}}}
a + b + c + d + e = (A) 25 β
The problems on this page are the property of the MAA's American Mathematics Competitions