What is the ones digit of the sum
β 1 k β + β 2 k β + β 3 k β + β― + β 2025 k β ? \left\lfloor \sqrt[k]{1}\right\rfloor + \left\lfloor \sqrt[k]{2}\right\rfloor + \left\lfloor \sqrt[k]{3}\right\rfloor + \cdots + \left\lfloor \sqrt[k]{2025}\right\rfloor?
β k 1 β β + β k 2 β β + β k 3 β β + β― + β k 2 0 2 5 β β ?
(Recall that β x β \lfloor x\rfloorβ x β denotes the greatest integer less than or equal to x xx .)
Answer Choices:
A. 1 11
B. 2 22
C. 3 33
D. 5 55
E. 8 88
π¬ Join the Discussion
Stuck on this problem or want to share your approach?
Continue the conversation and see what others are thinking: View Forum Thread
We want the ones digit of
S = β 1 β + β 2 β + β― + β 2025 β . S=\left\lfloor\sqrt{1}\right\rfloor+
\left\lfloor\sqrt{2}\right\rfloor+
\cdots+
\left\lfloor\sqrt{2025}\right\rfloor.
S = β 1 β β + β 2 β β + β― + β 2 0 2 5 β β .
For each positive integer m mm , we have
m 2 β€ n < ( m + 1 ) 2 β
β βΉ β
β β n β = m . m^2 \le n < (m+1)^2
\quad\implies\quad
\lfloor \sqrt{n}\rfloor = m.
m 2 β€ n < ( m + 1 ) 2 βΉ β n β β = m .
On this interval, there are ( m + 1 ) 2 β m 2 = 2 m + 1 (m+1)^2 - m^2 = 2m+1( m + 1 ) 2 β m 2 = 2 m + 1 integers n nn , each contributing m mm to the sum. The largest perfect square β€ 2025 \le 2025β€ 2 0 2 5 is
4 5 2 = 2025. 45^2 = 2025.
4 5 2 = 2 0 2 5 .
Thus, the sum is
S = 45 + β m = 1 44 m ( 2 m + 1 ) = 45 + 2 β m = 1 44 m 2 + β m = 1 44 m = 45 + 2 ( 44 ) ( 44 + 1 ) ( 2 β
44 + 1 ) 6 + 44 β
( 44 + 1 ) 2 S=45+\sum_{m=1}^{44} m(2m+1) = 45 + 2\sum_{m=1}^{44} m^2 + \sum_{m=1}^{44} m = 45+ 2\dfrac{(44)(44+1)(2\cdot 44+1)}{6} + \dfrac{44\cdot(44+1)}{2}
S = 4 5 + m = 1 β 4 4 β m ( 2 m + 1 ) = 4 5 + 2 m = 1 β 4 4 β m 2 + m = 1 β 4 4 β m = 4 5 + 2 6 ( 4 4 ) ( 4 4 + 1 ) ( 2 β
4 4 + 1 ) β + 2 4 4 β
( 4 4 + 1 ) β
Since we only need the ones digit, we compute everything modulo 10 101 0 .
S β‘ 45 + 2 ( 44 ) ( 44 + 1 ) ( 2 β
44 + 1 ) 6 + 44 β
( 44 + 1 ) 2 β β 10. S \equiv 45+ 2\dfrac{(44)(44+1)(2\cdot 44+1)}{6} + \dfrac{44\cdot(44+1)}{2} \bmod{10}.
S β‘ 4 5 + 2 6 ( 4 4 ) ( 4 4 + 1 ) ( 2 β
4 4 + 1 ) β + 2 4 4 β
( 4 4 + 1 ) β m o d 1 0 .
Therefore,
S β‘ 45 + ( 44 ) ( 15 ) ( 89 ) + 22 β
45 β‘ (D) 5 β β 10. S \equiv 45+(44)(15)(89) + 22\cdot 45 \equiv \boxed{{\textbf{(D)~5}}}\bmod{10}.
S β‘ 4 5 + ( 4 4 ) ( 1 5 ) ( 8 9 ) + 2 2 β
4 5 β‘ (D) 5 β m o d 1 0 .
The problems on this page are the property of the MAA's American Mathematics Competitions