Problem:
For all integers n greater than 1 , define anβ=lognβ20021β. Let b=a2β+a3β+a4β+a5β and c=a10β+a11β+a12β+a13β+a14β. Then bβc equals
Answer Choices:
A. β2
B. β1
C. 20021β
D. 10011β
E. 21β
Solution:
We have anβ=lognβ20021β=log2002βn, so
bβc=(log2002β2+log2002β3+log2002β4+log2002β5)β(log2002β10+log2002β11+log2002β12+log2002β13+log2002β14)=log2002β10β
11β
12β
13β
142β
3β
4β
5β=log2002β11β
13β
141β=log2002β20021β=β1ββ
The problems on this page are the property of the MAA's American Mathematics Competitions