Problem:
A function f has the property that f(3xβ1)=x2+x+1 for all real numbers x. What is f(5) ?
Answer Choices:
A. 7
B. 13
C. 31
D. 111
E. 211
Solution:
Let u=3xβ1. Then x=(u+1)/3, and
f(u)=(3u+1β)2+3u+1β+1=9u2+2u+1β+3u+1β+1=9u2+5u+13β
In particular,
f(5)=952+5β
5+13β=963β=7β
OR
The value of 3xβ1 is 5 when x=2. Thus
f(5)=f(3β
2β1)=22+2+1=7β
The problems on this page are the property of the MAA's American Mathematics Competitions