Problem:
For what value of n is i+2i2+3i3+β―+nin=48+49i ? Note: here i=β1β.
Answer Choices:
A. 24
B. 48
C. 49
D. 97
E. 98
Solution:
Let k be a multiple of 4 . For kβ₯0,
(k+1)ik+1+(k+2)ik+2+(k+3)ik+3+(k+4)ik+4=(k+1)i+(k+2)(β1)+(k+3)(βi)+(k+4)=2β2iβ
Thus when n=4β
24=96, we have i+2i2+β―+nin=24(2β2i)=48β48i. Adding the term 97i97=97i gives (48β48i)+97i=48+49i when n=97β.
The problems on this page are the property of the MAA's American Mathematics Competitions